화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.11, 1806-1813, November, 2019
Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption
E-mail:
Volatile organic compounds (VOCs) can cause carcinogenic risk, odor problems, and even generation of particulate matter. Adsorption is an effective technique for controlling VOC emissions at the source. In this study, porous clay heterostructure (PCH) was considered as a possible VOC adsorbent, and the synthesis conditions were optimized. The ratio of tetraethyl orthosilicate (TEOS) compared to organoclay and dodecylamine (DDA) was selected as a synthesis condition variable (organoclay : dodecylamine : TEOS=1 : 1 : 30-120). We investigated the change of morphology and porosity of PCH by using a transmission electron microscope, nitrogen adsorption/desorption, and x-ray fluorescence. The porosity of PCH was changed depending on the TEOS ratio. As the ratio of TEOS decreased, the pore size of the PCH also decreased. However, irregular layer expansion was observed due to the swelling of organoclay by DDA in PCH30. To evaluate the possibility of using PCH as an adsorbent for low concentration VOCs, specifically toluene and decane, adsorption experiments were conducted, and it was confirmed that micropores play an essential role for low concentration VOC adsorption. PCH60 was selected as an optimal condition. The toluene and decane adsorption capacity of PCH60 was, respectively, measured as 122.92mg/g and 886.73mg/g.
  1. Shareefdeen Z, Singh A, Biotechnology for odor and air pollution control, Springer Science & Business media, Berlin, Heidelberg (2005).
  2. Tancrede M, Wilson R, Zeise L, Crouch EAC, Atmos. Environ., 21, 2187 (1987)
  3. Iranpour R, Cox HHJ, Deshusses MA, Schroeder ED, Environ. Prog. Sustain. Energy, 24, 254 (2005)
  4. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, et al., Atmos. Chem. Phys., 5, 1053 (2005)
  5. Derwent RG, Jenkin ME, Utembe SR, Shallcross DE, Murrells TP, Passant NR, Sci. Total Environ., 408, 3374 (2010)
  6. Shin H, Kim J, Lee S, Kim Y, Environ. Sci. Pollut. Res., 20, 1468 (2013)
  7. Leson G, Winer AM, J. Air Waste Manage. Assoc., 41, 1045 (1991)
  8. Granstrom T, Lindberg P, Nummela J, Jokela J, Leisola M, Biodegradation, 13, 155 (2002)
  9. Campesi MA, Luzi CE, Barreto GF, Martinez OM, J. Environ. Manage., 154, 216 (2015)
  10. Choi BS, Yi J, Chem. Eng. J., 76(2), 103 (2000)
  11. Chiang Y, Chiang P, Huang C, Carbon, 39, 523 (2001)
  12. Ghoshal AK, Manjare SD, J. Loss Prevent. Proc., 15, 413 (2002)
  13. Ioannidou O, Zabaniotou A, Renew. Sust. Energ. Rev., 11, 1966 (2007)
  14. Strudgeon GE, Lewis BJ, Albury WW, Clinger RC, J. Water Pollut. Control Fed., 52, 2516 (1980)
  15. Zhu L, Tian S, Shi Y, Clay. Clay Miner., 53, 123 (2005)
  16. Delage F, Pre P, LeCloirec P, Environ. Sci. Technol., 34, 4816 (2000)
  17. Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391 (2000)
  18. Khan SA, Khan MA, Riaz-ur-Rehman, Waste Manage., 15, 271 (1995)
  19. Wang K, Xing B, J. Environ. Qual., 34, 342 (2005)
  20. Qu F, Zhu LZ, Yang K, J. Hazard. Mater., 170(1), 7 (2009)
  21. He H, Ma L, Zhu J, Frost RL, Theng BKG, Bergaya F, Appl. Clay Sci., 100, 22 (2014)
  22. Deng L, Yuan P, Liu D, Annabi-Bergaya F, Zhou J, Chen F, Liu Z, Appl. Clay Sci., 143, 184 (2017)
  23. de Paiva LB, Morales AR, Diaz FR, Appl. Clay Sci., 42, 8 (2008)
  24. Pires J, Carvalho A, de Carvalho MB, Microporous Mesoporous Mater., 43, 277 (2001)
  25. Galarneau A, Barodawalla A, Pinnavaia TJ, Nature, 374(6522), 529 (1995)
  26. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 43, 1758 (2005)
  27. Modak SK, Mandal A, Chakrabarty D, Polym. Compos., 34, 32 (2013)
  28. Wang Y, Zhang P, Wen K, Su X, Zhu J, He H, Microporous Mesoporous Mater., 224, 285 (2016)
  29. Kwon KD, Jo WK, Lim HJ, Jeong WS, J. Hazard. Mater., 148(1-2), 192 (2007)
  30. Park JA, Kang JK, Kim JH, Kim SB, Yu S, Kim TH, Environ. Eng. Res., 20, 133 (2015)
  31. Hu Y, Liu L, Min F, Zhang M, Song S, Colloids Surf. A: Physicochem. Eng. Asp., 434, 281 (2013)
  32. Kosuge K, Kubo S, Kikukawa N, Takemori M, Langmuir, 23(6), 3095 (2007)
  33. Sing KSW, Pure Appl. Chem., 57, 603 (1985)
  34. Chen H, Schiraldi DA, Polym. Rev., 59, 1 (2019)
  35. Guo Q, Liu YZ, Qi GS, Jiao WZ, Chem. Eng. Res. Des., 143, 47 (2019)
  36. Amari A, Chlendi M, Gannouni A, Bellagi A, Appl. Clay Sci., 47, 457 (2010)
  37. Benkhedda J, Jaubert J, Barth D, Perrin L, J. Chem. Eng. Data, 45, 650 (2000)
  38. Wang CM, Chang KS, Chung TW, Wu HD, J. Chem. Eng. Data, 49(3), 527 (2004)
  39. Lillo-Rodenas MA, Fletcher AJ, Thomas KM, Cazorla-Amoros D, Linares-Solano A, Carbon, 44, 1455 (2006)
  40. Zhang J, Lu S, Li J, Zhang P, Xue H, Zhao X, Xie L, Energies, 10, 1586 (2017)
  41. Ushiki I, Ota M, Sato Y, Inomata H, Fluid Phase Equilib., 375, 293 (2014)
  42. Azambre B, Westermann A, Finqueneisel G, Can F, Comparot JD, J. Phys. Chem. C, 119, 315 (2015)
  43. Ushiki I, Ota M, Sato Y, Inomata H, Fluid Phase Equilib., 344, 101 (2013)
  44. Takahashi N, Ushiki I, Hamabe Y, Ota M, Sato Y, Inomata H, J. Supercrit. Fluids, 107, 226 (2016)