Journal of Industrial and Engineering Chemistry, Vol.80, 152-159, December, 2019
Correlation verification of process factors and harmful gas adsorption properties for optimization of physical activation parameters of PAN-based carbon fibers
E-mail:
In this study, the effects of activation parameters in the steam activation of polyacrylonitrile-based carbon fibers on pore formation properties were investigated. The activation temperature was used as a primary parameter, and the activation time was adjusted for each condition to obtain similar levels of activation yields. Based on the activation yield of activated carbon fibers (ACFs), the activation energy was calculated as 142.2 kJ/mole. As a result of BET analysis, it was confirmed that the specific surface area and pore volume of ACFs were improved as the activation temperature was increased. The sample treated at 850 °C during 45 min showed a high specific surface area (1041.9 m2/g) and a pore volume (0.49 cm3/g). This developed pore structures improved the gas adsorption properties of ACFs.
- Hamzehlouyan T, Sampara CS, Li JH, Kumar A, Epling WS, Appl. Catal. B: Environ., 181, 587 (2016)
- Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM, J. Am. Ceram. Soc., 134, 1970 (2012)
- Deng H, Yi HH, Tang XL, Liu HY, Zhou X, Ind. Eng. Chem. Res., 52(20), 6778 (2013)
- Han S, Huang Y, Watanabe T, Nair S, Walton KS, Sholl DS, Meredith JC, Microporous Mesoporous Mater., 173, 86 (2013)
- Elder AC, Bhattacharyya S, Nair S, Orlando TM, J. Phys. Chem. C, 122, 10413 (2018)
- Li Y, Guo Y, Zhu T, Ding S, J. Environ. Sci., 43, 128 (2016)
- Yi HH, Wang ZX, Liu HY, Tang XL, Ma D, Zhao SZ, Zhang BW, Gao FY, Zuo YR, J. Chem. Eng. Data, 59(5), 1556 (2014)
- Asadullah M, Jahan I, Ahmed MB, Adawiyah P, Malek NH, Rahman MS, J. Ind. Eng. Chem., 20(3), 887 (2014)
- Jiang S, Zhang L, Chen T, Wang G, J. Ind. Eng. Chem., 20(4), 1693 (2014)
- Watanabe A, Iiyama T, Kaneko K, Chem. Phys. Lett., 305, 71 (1999)
- Suzuki M, Carbon, 32, 577 (1994)
- Zhang XY, Gao B, Creamer AE, Cao CC, Li YC, J. Hazard. Mater., 338, 102 (2017)
- Arcibar-Orozco JA, Rangle-Mendez JR, Diaz-Flores PE, Water Air Soil Pollut., 226, 2197 (2015)
- Kim SG, Chang YR, J. Korean Soc. Atmos. Environ., 24, 220 (2008)
- Lim HS, Kim MJ, Kong EY, Jeong JD, Lee YS, Appl. Chem. Eng., 29(3), 312 (2018)
- Prajapati YN, Bhaduri B, Joshi HC, Srivastava A, Verma N, Chemosphere, 155, 62 (2016)
- Ma X, Yang H, Yu L, Chen Y, Li Y, Materials, 7, 4431 (2014)
- Liu QS, Zheng T, Wang P, Jiang JP, Li N, Chem. Eng. J., 157(2-3), 348 (2010)
- Lei S, Miyamoto JI, Kanoh H, Nakahigashi Y, Kaneko K, Cabon, 44, 1884 (2006)
- Diez N, Alvarez P, Granda M, Blanco C, Santamaria R, Menendez R, Chem. Eng. J., 15, 463 (2015)
- Li J, Ng DHL, Song P, Kong C, Song Y, Yang P, Biomass Bioenergy, 75, 189 (2015)
- Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 41, 267 (2003)
- Gonzalez JF, Roman S, Gonzalez-Garcia CM, Nabais JMV, Ortiz AL, Ind. Eng. Chem. Res., 48(16), 7474 (2009)
- Rashidi NA, Yusup S, Hameed BH, Energy, 61, 440 (2013)
- Mahmoudi K, Hosni K, Hamdi N, Srasra E, Korean J. Chem. Eng., 32(2), 274 (2015)
- Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127(1-3), 111 (2007)
- Bai BC, Lee CW, Lee YS, Im JS, Mater. Chem. Phys., 200, 361 (2017)
- Pastor-Villegas J, Duran-Valle CJ, Carbon, 40, 397 (2002)
- Kasaoka S, Sakata Y, Kayano S, Masuoka Y, Int. Chem. Eng., 23, 477 (1983)
- Roh JS, Carbon Lett., 9, 121 (2008)
- Yang T, Lua AC, J. Colloid Interface Sci., 267(2), 408 (2003)
- Chiang YC, Chiang PC, Huang CP, Carbon, 39, 523 (2001)
- Atanes E, Nieto-Marquez A, Cambra A, Ruiz-Perez MC, Fernandez-Martinez F, Chem. Eng. J., 15, 60 (2012)
- Park SH, Choi MS, Park HS, Carbon Lett. (2019).
- Lee GB, Park JE, Hwang SY, Kim JH, Kim SH, Kim H, Hong BU, Carbon Lett. (2019).
- Seo SW, Choi YJ, Kim JH, Cho JH, Lee YS, Im JS, Carbon Lett. (2019).