화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.80, 217-226, December, 2019
Effect of oxygen addition, reaction temperature and thermal treatments on syngas production from biogas combined reforming using Rh/alumina catalysts
E-mail:
Dry reforming and partial oxidation of biogas were studied using 0.5 wt.% Rh/Al2O3 catalysts, both in-house prepared and commercial. The effects of O2 addition on syngas yield and biogas conversion were studied at 700 °C using different O2/CH4 ratios in the gas feeding stream: 0 (dry reforming), 0.12, 0.25, 0.45 and 0.50. The highest CH4 conversion, H2 yield and H2/CO molar ratio were obtained with an O2/CH4 ratio of 0.45, even though simultaneous valorization of both CH4 and CO2 could be best attained when the O2/CH4 ratio was 0.12. Increased biogas conversions and syngas yields were obtained by increasing reaction temperatures between 650 and 750 °C. A detrimental influence on catalytic activity could be observed when the catalyst was subjected to calcination. Increasing the hold time of the thermal conditioning of the catalyst under inert flow altered Rh dispersion, though had no significant impact on catalyst performance in the dry reforming of methane at 700 °C and 150 N L CH4/(gcat h). Characterization of spent samples after reaction by Raman spectroscopy revealed the presence of carbonaceous deposits of different nature, especially on the commercial (named as Rh com) and calcined (Rh calc) catalysts, though oxygen addition in the biogas feed significantly reduced the amount of these deposits. The Rh catalysts that had not been calcined after impregnation (Rh prep) did not present any noticeable characteristic peaks in the G and D bands. In particular, scanning transmission electron microscopy (STEM) images of the spent Rh prep sample revealed the presence of very highly dispersed Rh nanoparticles after reaction, of particle sizes of about 1 nm, and no noticeable C deposits. Combined oxy-CO2 reforming of biogas using highly dispersed and low metal-loading Rh/Al2O3 catalysts with low O2 dosage in the reactor feed can be used to effectively transform biogas into syngas.
  1. World Bioenergy Association, WBA Global Bioenergy Statistics 2017, pp.80 (2017).
  2. Rasi S, Veijanen A, Rintala J, Energy, 32(8), 1375 (2007)
  3. Moral A, Reyero I, Alfaro C, Bimbela F, Gandia LM, Catal. Today, 299, 280 (2018)
  4. EurObserv’ER, The State of Renewable Energies in Europe, (2016).
  5. Budzianowski WM, Renew. Sust. Energ. Rev., 54, 1148 (2016)
  6. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X, Renew. Sust. Energ. Rev., 51, 521 (2015)
  7. Okeke IJ, Mani S, Biofuels Bioprod. Biorefin., 11, 472 (2017)
  8. Moral A, Reyero I, Llorca J, Bimbela F, Gandia LM, Catal. Today, 333, 259 (2019)
  9. Lavoie JM, Front. Chem. 2, Article 81 (2014).
  10. Pakhare D, Spivey J, Chem. Soc. Rev., 43, 7813 (2014)
  11. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN, Renew. Sust. Energ. Rev., 82, 2570 (2018)
  12. Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS, Catal. Today, 324, 15 (2019)
  13. Abdulrasheed A, Abdul A, Gambo Y, Ibrahim M, Umar H, Yusuf M, et al., Renew. Sust. Energ. Rev., 108, 175 (2019)
  14. Gao YC, Jiang JG, Meng Y, Yan F, Aihemaiti A, Energy Conv. Manag., 171, 133 (2018)
  15. Alvarez A, Bobadilla LF, Garcilaso V, Centeno MA, Odriozola JA, J Co2 Util., 24, 509 (2018)
  16. Charisiou ND, Siakavelas G, Tzounis L, Sebastian V, Monzon A, Baker MA, Hinder SJ, Polychronopoulou K, Yentekakis IV, Goula MA, Int. J. Hydrog. Energy, 43(41), 18955 (2018)
  17. Kumar N, Shojaee M, Spivey JJ, Curr. Opin. Chem. Eng., 9, 8 (2015)
  18. Choudhary TV, Choudhary VR, Angew. Chem.-Int. Edit., 47, 1828 (2008)
  19. Izquierdo U, Barrio VL, Requies J, Cambra JF, Guemez MB, Arias PL, Int. J. Hydrog. Energy, 38(18), 7623 (2013)
  20. Amin NAS, Yaw TC, Int. J. Hydrog. Energy, 32(12), 1789 (2007)
  21. Lau CS, Tsolakis A, Wyszynski ML, Int. J. Hydrog. Energy, 36(1), 397 (2011)
  22. Sepehri S, Rezaei M, Wang Y, Younesi A, Arandiyan H, Int. J. Hydrog. Energy, 43(49), 22340 (2018)
  23. Habibi N, Arandiyan H, Rezaei M, RSC Adv., 6, 29576 (2016)
  24. Charisiou ND, Tzounis L, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA, Appl. Surf. Sci., 474, 42 (2019)
  25. Charisiou ND, Siakavelas G, Papageridis KN, Baklavaridis A, Tzounis L, Avraam DG, et al., J. Nat. Gas Sci. Eng., 31, 164 (2016)
  26. Goula MA, Charisiou ND, Papageridis KN, Delimitis A, Pachatouridou E, Iliopoulou EF, Int. J. Hydrog. Energy, 40(30), 9183 (2015)
  27. Arandiyan H, Peng Y, Liu CX, Chang HZ, Li JH, J. Chem. Technol. Biotechnol., 89(3), 372 (2014)
  28. Richardson JT, Paripatyadar SA, Appl. Catal., 61, 293 (1990)
  29. de Caprariis B, de Filippis P, Palma V, Petrullo A, Ricca A, Ruoccob C, Scarsella M, Appl. Catal. A: Gen., 517, 47 (2016)
  30. Polo-Garzon F, Scott JK, Bruce DA, J. Catal., 340, 196 (2016)
  31. Fernandez C, Miranda N, Garcia X, Eloy P, Ruiz P, Gordon A, et al., Appl. Catal. B: Environ., 156-157, 202 (2014)
  32. Fasolini A, Abate S, Barbera D, Centi G, Basile F, Appl. Catal. A: Gen., 581, 91 (2019)
  33. Basile F, Mafessanti R, Fasolini A, Fornasari G, Lombardi E, Vaccari A, J. European Ceram. Soc., 39, 41 (2019)
  34. Mohamedali M, Henni A, Ibrahim H, ChemEngineering, 2, 9 (2018)
  35. Zhu Q, Zhao X, Deng Y, J. Nat. Gas Chem., 13, 191 (2004)
  36. Boukha Z, Gil-Calvo M, de Rivas B, Gonzalez-Velasco JR, Gutierrez-Ortiz JI, Lopez-Fonseca R, Appl. Catal. A: Gen., 556, 191 (2018)
  37. Cai W, Qian L, Yue B, He H, Chin. Chem. Lett., 25, 1411 (2014)
  38. Drif A, Bion N, Brahmi R, Ojala S, Pirault-Roy L, Turpeinen E, Seelam PK, Keiski RL, Epron F, Appl. Catal. A: Gen., 504, 576 (2015)
  39. Roy PS, Park CS, Raju ASK, Kim K, J. CO2 Util, 12, 12 (2015)
  40. Roy PS, Song JW, Kim KS, Kim JM, Park CS, Raja ASK, J. Ind. Eng. Chem., 62, 120 (2018)
  41. Katheria S, Deo G, Kunzru D, Appl. Catal. A: Gen., 570, 308 (2019)
  42. Shoynkhorova TB, Snytnikov PV, Simonov PA, Potemkin DI, Rogozhnikov VN, Gerasimov EY, Salanov AN, Belyaev VD, Sobyanin VA, Appl. Catal. B: Environ., 245, 40 (2019)
  43. Cimino S, Landi G, Lisi L, Russo G, Catal. Today, 105 (2005)
  44. Tsyganok AI, Inaba M, Tsunoda T, Suzuki K, Takehira K, Hayakawa T, Appl. Catal. A: Gen., 275(1-2), 149 (2004)
  45. Al-Fatesh A, Singh SK, Kanade GS, Atia H, Fakeeha AH, Ibrahim AA, El-Toni AM, Labhasetwar NK, Int. J. Hydrog. Energy, 43(27), 12069 (2018)
  46. Chen WH, Lin SC, Appl. Energy, 217, 113 (2018)
  47. Ocsachoque M, Bengoa J, Gazzoli D, Gonzalez MG, Catal. Lett., 141(11), 1643 (2011)
  48. Li JM, Huang FY, Weng WZ, Pei XQ, Luo CR, Lin HQ, Huang CJ, Wan HL, Catal. Today, 131(1-4), 179 (2008)
  49. Yates JT, Duncan TM, Vaughan RW, J. Chem. Phys., 71, 3908 (1979)
  50. Yates JT, Duncan TM, Worley SD, Vaughan RW, J. Chem. Phys., 70, 1219 (1979)
  51. Cao CD, Bourane A, Schlup JR, Hohn KL, Appl. Catal. A: Gen., 344(1-2), 78 (2008)
  52. Weng WZ, Pei XQ, Li HM, Luo CR, Liu Y, Lin HQ, Huang CJ, Wan HL, Catal. Today, 117(1-3), 53 (2006)
  53. Ruckenstein E, Stud. Surf. Sci. Catal., 88, 33 (1994)
  54. Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE, J. Catal., 158(1), 51 (1996)
  55. Martin D, Duprez D, J. Phys. Chem., 100(22), 9429 (1996)
  56. Maestri M, Vlachos DG, Beretta A, Forzatti P, Groppi G, Tronconi E, Top. Catal., 52, 1983 (2009)
  57. Djinovic P, Crnivec IGO, Batista J, Levec J, Pintar A, Chem. Eng. Process., 50(10), 1054 (2011)
  58. Serrano-Lotina A, Daza L, Int. J. Hydrog. Energy, 39(8), 4089 (2014)
  59. Maestri M, Livio D, Beretta A, Groppi G, Ind. Eng. Chem. Res., 53(27), 10914 (2014)
  60. Tuinstra F, Koenig JL, J. Chem. Phys., 53, 1126 (1970)
  61. Cimino S, Lisi L, Mancino G, Int. J. Hydrog. Energy, 42(37), 23587 (2017)
  62. Ferreiraaparicio P, Rodriguez-Ramos I, Guerreroruiz A, Appl. Catal. A: Gen., 148(2), 343 (1997)
  63. Onoja OP, Wang X, Kechagiopoulos PN, Chem. Eng. Process. Process Intensif., 135, 156 (2019)
  64. Cornaglia LM, Munera J, Irusta S, Lombardo EA, Appl. Catal. A: Gen., 263(1), 91 (2004)
  65. Faroldi B, Munera J, Falivene JM, Ramos IR, Garcia AG, Fernandez LT, Carrazan SG, Cornaglia L, Int. J. Hydrog. Energy, 42(25), 16127 (2017)