Polymer(Korea), Vol.43, No.6, 824-830, November, 2019
산 종류에 따른 폴리우레탄 탄성체의 합성
Synthesis of Polyurethane Elastomers by Different Kinds of Acids
E-mail:
초록
Azelaic acid, sebacic acid, succinic acid와 1,3-propanediol(1,3 PD)를 병용하여 바이오 폴리에스터 폴리올을 합성하였다. 합성한 폴리올에 사슬연장제 없이 MDI(4,4'-methylenebis(phenyl isocyanate))를 1:1.1 비율로 혼합하여 바이오 열가소성 폴리우레탄을 합성하였다. Poly(1,4-butylene adipate)를 폴리올로 사용하여 같은 비율로 MDI를 혼합하여 일반 열가소성 폴리우레탄을 합성한 후 물성을 비교하였다. 열가소성 폴리우레탄의 성분 및 구조를 분석하기 위해서 FTIR, TGA 및 GPC를 사용하였다. 고분자가공분석기(RPA)의 변형 스윕(strain sweep) 기능을 이용하여 열가소성 폴리우레탄의 점탄성을 분석하였다. Shore A 경도계, 볼 반발 탄성시험기, UTM을 사용하여 열가소성 폴리우레탄의 경도, ball rebound, 인장강도를 측정하였다. 또한 외부 환경 변화에 따른 인장강도 유지율을 통해 내열성, 내수성, 내화학성을 분석하였다. Sebacic acid와 1,3 PD에 의한 바이오 열가소성 폴리우레탄이 가장 좋은 점탄성과 기계적 물성을 보였다. 인장강도는 일반 열가소성 폴리우레탄에 비해 낮았지만, 외부 환경변화에 따른 유지율이 상대적으로 높았다.
Bio-polyester polyol was synthesized by using azelaic acid, sebacic acid, succinic acid and 1,3-propanediol (1,3 PD). 4,4'-methylenebis(phenyl isocyanate) (MDI) was mixed in the ratio of 1:1.1 without chain extender to synthesize the bio-thermoplastic polyurethane (TPU). Poly(1,4-butylene adipate) was used as polyol and MDI was mixed at the same ratio to synthesize general TPU, and then physical properties were compared. FTIR, TGA and GPC were used to analyze the composition and structure of the TPU. The viscoelastic properties of the TPU were tested using the strain sweep function of the rubber processing analyzer (RPA). The hardness, ball rebound and tensile strength of the TPU were measured using a Shore A tester, ball rebound tester and UTM. In addition, heat resistance, water resistance, and chemical resistance were analyzed through the tensile strength retention ratio according to external environment change. The bio- TPU with sebacic acid and 1,3-PD showed the best viscoelastic and mechanical properties. The tensile strength was lower than that of general TPU, but the retention ratio change was relatively high according to the external environment.
- Miao S, Wang P, Su Z, Zhang S, Acta. Biomater., 10, 1692 (2014)
- Datta J, Glowinska E, Ind. Crop. Prod., 61, 84 (2014)
- Nayak PL, J. Macromol. Sci. C, 40, 1 (2000)
- Zia KM, Bhatti HN, Bhatti IA, React. Funct. Polym., 67, 8 (2007)
- Madbouly SA, Otaigbe JU, Prog. Polym. Sci, 34, 12 (2009)
- Lemos VA, Santos MS, Santos ES, Santos MJS, Santos WNL, Souza AS, Vale MGR, Spectroc. Acta Pt. B-Atom. Spectr., 62, 1 (2007)
- Silva RV, Spinelli D, Fillho WWB, Neto SC, Chierice GO, Tarpani JR, Compos. Sci. Technol., 66, 10 (2006)
- Kumar MS, Manjula KS, J. Appl. Polym. Sci., 105, 6 (2007)
- Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM, Waste Manage., 26, 487 (2007)
- Monteavaro LL, da Silva EO, Costa APO, Samios D, Gerbase AE, Perzhold CL, J. Am. Oil Chem. Soc., 82, 365 (2005)
- Jin KH, Kim MS, Cho UR, Elastomers Compos., 48, 190 (2013)
- Jin KH, Kim MS, Cho UR, Elastomers Compos., 49, 31 (2014)
- Petrovic ZS, Zhang W, Javni I, Biomacromolecules, 6(2), 713 (2005)
- Choi SY, Cho UR, Elastomers Compos., 40, 246 (2005)
- Hwang SO, Lee BH, Cho UR, Elastomers Composites, 47, 238 (2012)
- Blumstein A, Blumstein RB, Recent Advances in Liquid Crystalline Polymers, Springer, Dordrecht, p 129 (1985).
- Pyo MU, PU Science and Technology, Guduk, Busan, 2006.