화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.11, 1071-1080, November, 2019
Cationic Oligopeptide-Functionalized Mitochondria Targeting Sequence Show Mitochondria Targeting and Anticancer Activity
E-mail:,
Mitochondrial drug delivery systems require development of highly selective mitochondria-targeting carriers. In this study, we report that mitochondria targeting sequence (MTS)-hybrid cationic oligopeptide, MTS-H3R9, shows the dual role of a mitochondria targeting vector along with anticancer effect for cancer therapy. In cytotoxicity assays, MTS-H3R9 was shown to be more effective than MTS. MTS-H3R9 showed significant cell penetration and internalization activity compared to that of MTS along with more efficient escape from lysosome to the cytosol. We showed efficient targeting of MTS-H3R9 to mitochondria in HeLa cell line. Furthermore, we exhibited anticancer agent properties that mitochondrial-accumulated MTS-H3R9 caused cell death by reactive oxygen species generation and loss of mitochondrial membrane potential. MTS-H3R9 exhibited dramatically increased anticancer activity in 3D spheroids as well as in a 2D culture model. We demonstrated that MTS-H3R9 provides dual potentials both as a vehicle for targeted delivery and as a cancer treatment agent for therapeutic applications.
  1. Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I, Drug. Des. Devel. Ther., 11, 2871 (2017)
  2. Zhao CY, Cheng R, Yang Z, Tian ZM, Molecules, 23 (2018)
  3. Zhang E, Zhang C, Su Y, Cheng T, Shi C, Drug Discov. Today, 16, 140 (2011)
  4. Farokhzad OC, Langer R, ACS Nano, 3, 16 (2009)
  5. Truong NP, Whittaker MR, Mak CW, Davis TP, Expert. Opin. Drug Deliv., 12, 129 (2015)
  6. Biswas S, Torchilin VP, Adv. Drug Deliv. Rev., 66, 26 (2014)
  7. Youle RJ, van der Bliek AM, Science, 337(6098), 1062 (2012)
  8. Lackner LL, BMC Biol., 12, 35 (2014)
  9. Grandemange S, Herzig S, Martinou JC, Semin. Cancer Biol., 19, 50 (2009)
  10. Heller A, Brockhoff G, Goepferich A, Eur. J. Pharm. Biopharm., 82, 1 (2012)
  11. Modica-Napolitano JS, Weissig V, Int. J. Mol. Sci., 16(8), 17394 (2015)
  12. Yamada Y, Akita H, Kogure K, Kamiya H, Harashima H, Mitochondrion, 7, 63 (2007)
  13. Jean SR, Ahmed M, Lei EK, Wisnovsky SP, Kelley SO, Accounts Chem. Res., 49, 1893 (2016)
  14. Horton KL, Kelley SO, J. Med. Chem., 52, 3293 (2009)
  15. Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H, Bioconjug. Chem., 26, 71 (2015)
  16. von Heijne G, Embo J., 5, 1335 (1986)
  17. Yu GS, Han J, Ko KS, Choi JS, Macromol. Res., 22(1), 42 (2014)
  18. Schmidt N, Mishra A, Lai GH, Wong GC, Febs Lett., 584, 1806 (2010)
  19. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W, Adv. Drug Deliv. Rev., 29, 69 (2014)
  20. Huang BW, Gao JQ, J. Control. Release, 270, 246 (2018)
  21. Cho MO, Li Z, Shim HE, Cho IS, Nurunnabi M, Park H, Lee KY, Moon SH, Kim KS, Kang SW, Huh KM, NPG Asia Mater., 8, e309 (2016)
  22. Bae Y, Green ES, Kim GY, Song SJ, Mun JY, Lee S, Park JI, Park JS, Ko KS, Han J, Choi JS, Int. J. Pharm., 515, 186 (2016)
  23. Bae Y, Jung MK, Lee S, Song SJ, Mun JY, Green ES, Han J, Ko KS, Choi JS, Eur. J. Pharm. Biopharm., 124, 104 (2018)
  24. Hunter AC, Adv. Drug Deliv. Rev., 58, 1523 (2006)
  25. Holder AL, Goth-Goldstein R, Lucas D, Koshland CP, Chem. Res. Toxicol., 25, 1885 (2012)
  26. Jain A, Chugh A, Febs Lett., 590, 2896 (2016)
  27. Yang Y, Xiang Y, Xu M, Sci. Rep., 5, 18583 (2015)
  28. Varkouhi AK, Scholte M, Storm G, Haisma HJ, J. Control. Release, 151, 220 (2011)
  29. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR, Methods Mol. Biol., 810, 183 (2012)
  30. Park J, Lee J, Choi C, PloS One, 6, e23211 (2011)
  31. Hu C, Chen X, Huang Y, Chen Y, Sci. Rep., 8, 2274 (2018)
  32. Xiang L, Xie G, Liu C, Zhou J, Chen J, Yu S, Li J, Pang X, Shi H, Liang H, Biochim. Biophys. Acta, 1833, 2996 (2013)
  33. Zhang X, Wang C, Wu J, Liu Y, Yang Z, Zhang Y, Sui X, Li M, Feng M, J. Control. Release, 262, 305 (2017)
  34. Lin RZ, Chang HY, Biotechnol. J., 3, 1172 (2008)