화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.12, 2095-2103, December, 2019
Modified kinetic rate equation model for cooling crystallization
E-mail:
The kinetic rate equation (KRE) model, unlike the population balance equation model, can describe growth, nucleation, and even Ostwald ripening simultaneously. However, the KRE model cannot be applied in cooling crystallization systems. In this work, we propose a modified KRE model to describe cooling crystallization. The modified KRE model can successfully describe crystal growth and nucleation in cooling crystallization systems. In addition, the metastable zone width was simulated using the modified KRE model and compared with the experimental data in references. The results revealed that the modified KRE model could express the effect of overheating prior to cooling on the metastable zone width. As the extent of overheating increases, the metastable zone width becomes wider, which phenomenon can be clearly simulated by the modified KRE model. This modeling capability is attributed to the behavior of particle clusters that are sized less than the size of sub-nuclei. Because the population balance equation model cannot describe the metastable zone width, the modified KRE model has certain competitive advantages in its application to various crystallization systems.
  1. Mullin JW, Crystallization, Elsevier (2001).
  2. Fujiwara M, Nagy ZK, Chew JW, Braatz RD, J. Process Control, 15(5), 493 (2005)
  3. Sanzida N, Nagy ZK, Comput. Chem. Eng., 130, 106559 (2019)
  4. Marcellos CFC, Durand H, Kwon JSI, Barreto AG, Lage PLD, de Souza MB, Secchi AR, Christofides PD, AIChE J., 64(5), 1618 (2018)
  5. McDonald MA, Bommarius AS, Rousseau RW, Grover MA, Comput. Chem. Eng., 123, 331 (2019)
  6. Kim H, Park K, Chang JW, Lee T, Kim SH, Yang DR, Cryst. Growth Des., 19, 1748 (2019)
  7. Park K, Kim DY, Yang DR, Ind. Eng. Chem. Res., 55(26), 7142 (2016)
  8. Leubner IH, Curr. Opin. Colloid Interface Sci., 5, 151 (2000)
  9. Chiu TY, Christofides PD, AIChE J., 46(2), 266 (2000)
  10. Kwon JSI, Nayhouse M, Christofides PD, Orkoulas G, Chem. Eng. Sci., 107, 47 (2014)
  11. Kwon JSI, Nayhouse M, Orkoulas G, Christofides PD, Chem. Eng. Sci., 119, 30 (2014)
  12. Griffin DJ, Grover MA, Kawajiri Y, Rousseau RW, Ind. Eng. Chem. Res., 55(5), 1361 (2016)
  13. Li HY, Kawajiri Y, Grover MA, Rousseau RW, Ind. Eng. Chem. Res., 56(14), 4060 (2017)
  14. Griffin DJ, Kawajiri Y, Grover MA, Rousseau RW, Cryst. Growth Des., 15, 305 (2014)
  15. Griffin DJ, Kawajiri Y, Rousseau RW, Grover MA, Chem. Eng. Sci., 164, 344 (2017)
  16. Li J, Tilbury CJ, Joswiak MN, Peters B, Doherty MF, Cryst. Growth Des., 16, 3313 (2016)
  17. Ramkrishna D, Singh MR, Annu. Rev. Chem. Biomol. Eng., 5, 123 (2014)
  18. Puel F, Fevotte G, Klein JP, Chem. Eng. Sci., 58(16), 3715 (2003)
  19. Costa CBB, Maciel MRW, Maciel R, Comput. Chem. Eng., 31(3), 206 (2007)
  20. Farias LFI, de Souza JA, Braatz RD, da Rosa CA, Comput. Chem. Eng., 123, 246 (2019)
  21. Fysikopoulos D, Benyahia B, Borsos A, Nagy ZK, Rielly CD, Comput. Chem. Eng., 122, 275 (2019)
  22. Szilagyi B, Agachi PS, Nagy ZK, Ind. Eng. Chem. Res., 57(9), 3320 (2018)
  23. Sulttan S, Rohani S, J. Cryst. Growth, 505, 19 (2019)
  24. da Rosa CA, Braatz RD, Ind. Eng. Chem. Res., 57(34), 11702 (2018)
  25. Hulburt HM, Katz S, Chem. Eng. Sci., 19, 555 (1964)
  26. Randolph A, Larson M, Theory of particulate technology, Academic Press, New York (1971).
  27. Vetter T, Iggland M, Ochsenbein DR, Hanseler FS, Mazzotti M, Cryst. Growth Des., 13, 4890 (2013)
  28. Fu X, Zhang D, Xu S, Yu B, Zhang K, Rohani S, Gong J, Cryst. Growth Des., 18, 2851 (2018)
  29. Anisi F, Kramer HJM, Chem. Eng. Res. Des., 138, 200 (2018)
  30. Kashchiev D, Nucleation, Elsevier (2000).
  31. Farkas L, Z. Phys. Chemie., 125, 236 (1927)
  32. Stranski I, Kaischew R, Ann. Phys., 415, 330 (1935)
  33. Becker R, Doring W, Ann. Phys., 416, 719 (1935)
  34. Hussain K, Thorsen G, Malthe-Sorenssen D, Chem. Eng. Sci., 56(7), 2295 (2001)
  35. Nordstrom FL, Svard M, Malmberg B, Rasmuson AC, Cryst. Growth Des., 12, 4340 (2012)
  36. Sugimoto T, Mori A, Inoue T, J. Cryst. Growth, 292(1), 108 (2006)
  37. Lignos I, Maceiczyk R, deMello AJ, Accounts Chem. Res., 50, 1248 (2017)
  38. Tahri Y, Kozisek Z, Gagniere E, Chabanon E, Bounahmidi T, Mangin D, Cryst. Growth Des., 16, 5689 (2016)
  39. Chang J, Cooper G, J. Comput. Phys., 6, 1 (1970)
  40. Iggland M, Mazzotti M, Cryst. Growth Des., 12, 1489 (2012)
  41. Trifkovic M, Sheikhzadeh M, Rohani S, J. Cryst. Growth, 311(14), 3640 (2009)
  42. Lenka M, Sarkar D, J. Cryst. Growth, 408, 85 (2014)
  43. Hu Q, Rohani S, Wang DX, Jutan A, AIChE J., 50(8), 1786 (2004)
  44. Yang DR, Lee KS, Lee JS, Kim SG, Kim DH, Bang YK, Ind. Eng. Chem. Res., 46(24), 8158 (2007)
  45. Kadam SS, Kulkarni SA, Ribera RC, Stankiewicz AI, ter Horst JH, Kramer HJM, Chem. Eng. Sci., 72, 10 (2012)
  46. Kobari M, Kubota N, Hirasawa I, CrystEngComm, 15, 1199 (2013)
  47. Kim KJ, Mersmann A, Chem. Eng. Sci., 56(7), 2315 (2001)
  48. Ulrich J, Strege C, J. Cryst. Growth, 237, 2130 (2002)
  49. Qi S, Avalle P, Saklatvala R, Craig DQ, Eur. J. Pharm. Biopharm., 69, 364 (2008)