화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 287-293, January, 2020
Temperature-dependent lithium diffusion in phographene: Insights from molecular dynamics simulation
E-mail:,
It is noteworthy to elucidate the underlying atomistic insights of next-generation battery electrode materials to overcome the existing constraints associated with its rapid progress. By employing classical molecular dynamics (MD) simulations, we have studied the temperature dependent structural, thermomechanical, and Lithium diffusion properties of α- and β-phographene (PhoG) for Lithium-ion battery (LIB) anode applications. Our results show that at 300 K both the PhoGs possess negative thermal expansion coefficient and is expounded as proof of anharmonicity present in it due to the existence of pliable bending modes in the out-of-plane direction. The computed ultrahigh stiffness of PhoG helps to prevent the acute lattice expansion issue upon Li intercalation. The study also brings out that Li atom could freely diffuse on the surface of the PhoGs, and thus a fast Li diffusivity and superior conductivity is observed. The calculated Li diffusion activation energies (<0.20 eV) of these membranes are lower than many of the typical for Li-based graphitic anode with a Li diffusion coefficient of 10-10-10-12cm2 s-1. In this regard, the excellent structural and thermo-mechanical stability, and low activation energy barrier in PhoGs assures its application as an anode material in high-performance LIBs.
  1. Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J, Tarascon JM, Nat. Mater., 2(11), 755 (2003)
  2. Kang KS, Meng YS, Breger J, Grey CP, Ceder G, Science, 311(5763), 977 (2006)
  3. Kang B, Ceder G, Nature, 458, 190 (2009)
  4. Armand M, Grugeon S, Vezin H, Laruelle S, Ribiere P, Poizot P, Tarascon JM, Nat. Mater., 8(2), 120 (2009)
  5. Sun YM, Liu NA, Cui Y, Nat. Energy, 1, 16071 (2016)
  6. Thackeray MM, Wolverton C, Isaacs ED, Energy Environ. Sci., 5(7), 7854 (2012)
  7. Novoselov KS, Mishchenko A, Carvalho A, Neto AHC, Science, 353(6298) (2016)
  8. Xu MS, Liang T, Shi MM, Chen HZ, Chem. Rev., 113(5), 3766 (2013)
  9. Zhou S, Liu XH, Wang DW, Nano Lett., 10(3), 860 (2010)
  10. Hwang H, Kim H, Cho J, Nano Lett., 11(11), 4826 (2011)
  11. Cakir D, Sevik C, Gulseren O, Peeters FM, J. Mater. Chem. A, 4(16), 6029 (2016)
  12. Sun QL, Dai Y, Ma YD, Jing T, Wei W, Huang BB, J. Phys. Chem. Lett., 7(6), 937 (2016)
  13. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  14. Tarascon JM, Nat. Chem., 2(6), 510 (2010)
  15. Goodenough JB, Park KS, J. Am. Chem. Soc., 135(4), 1167 (2013)
  16. Kulish VV, Malyi OI, Persson C, Wu P, Phys. Chem. Chem. Phys., 17(21), 13921 (2015)
  17. Zhao SJ, Kang W, Xue JM, J. Mater. Chem. A, 2(44), 19046 (2014)
  18. Li WF, Yang YM, Zhang G, Zhang YW, Nano Lett., 15(3), 1691 (2015)
  19. Er DQ, Li JW, Naguib M, Gogotsi Y, Shenoy VB, ACS Appl. Mater. Interfaces, 6(14), 11173 (2014)
  20. Karmakar S, Chowdhury C, Datta A, J. Phys. Chem. C, 120(27), 14522 (2016)
  21. Xiao B, Li YC, Yu XF, Cheng JB, ACS Appl. Mater. Interfaces, 8(51), 35342 (2016)
  22. Bhatt MD, O’Dwyer C, Phys. Chem. Chem. Phys., 17(7), 4799 (2015)
  23. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
  24. Zhu GZ, Lu K, Sun Q, Kawazoe Y, Jena P, Comput. Mater. Sci., 81, 275 (2014)
  25. Pollak E, Geng BS, Jeon KJ, Lucas IT, Richardson TJ, Wang F, Kostecki R, Nano Lett., 10(9), 3386 (2010)
  26. Lee E, Persson KA, Nano Lett., 12(9), 4624 (2012)
  27. Thomas HJS, Kim S, Jun BS, Lee CH, Lee SU, Carbon, 148, 344 (2019)
  28. Fan XF, Zheng WT, Kuo JL, ACS Appl. Mater. Interfaces, 4(5), 2432 (2012)
  29. Zhou LJ, Hou ZF, Wu LM, J. Phys. Chem. C, 116(41), 21780 (2012)
  30. Datta D, Li JW, Koratker N, Shenoy VB, Carbon, 80, 305 (2014)
  31. Yildirim H, Kinaci A, Zhao ZJ, Chan MKY, Greeley JP, ACS Appl. Mater. Interfaces, 6(23), 21141 (2014)
  32. Wan W, Wang HD, Materials, 8(9), 6163 (2015)
  33. Okamoto Y, J. Phys. Chem. C, 120(26), 14009 (2016)
  34. Ferguson D, Searles DJ, Hankel M, ACS Appl. Mater. Interfaces, 9(24), 20577 (2017)
  35. Li XY, Wang Q, Jena P, J. Phys. Chem. Lett., 8, 3234 (2017)
  36. Thomas S, Nam EB, Lee SU, ACS Appl. Mater. Interfaces, 10(42), 36240 (2018)
  37. Wang SW, Yang BC, Chen HY, Ruckenstein E, J. Mater. Chem. A, 6(16), 6815 (2018)
  38. Fan XY, Li J, Chen G, RSC Adv., 7(28), 17417 (2017)
  39. Plimpton S, J. Comput. Phys., 117(1), 1 (1995)
  40. Los JH, Fasolino A, Phys. Rev. B, 68(2), 024107 (2003)
  41. Lindsay L, Broido DA, Phys. Rev. B, 82(20), 209903 (2010)
  42. Raju M , Ganesh P, Kent PRC, van Duin ACT, J. Chem. Theory Comput., 11(5), 2156 (2015)
  43. Cai JM, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng XL, Mullen K, Fasel R, Nature, 466(7305), 470 (2010)
  44. Zakharchenko KV, Katsnelson MI, Fasolino A, Phys. Rev. Lett., 102, 046808 (2009)
  45. Thomas S, Ajith KM, Chandra S, Valsakumar MC, J. Phys. Condens. Matter, 27(31), 315302 (2015)
  46. Thomas S, Lee SU, RSC Adv., 9, 1238 (2019)
  47. Ganz E, Ganz AB, Yang LM, Dornfeld M, Phys. Chem. Chem. Phys., 19(5), 3756 (2017)
  48. Los JH, Zakharchenko KV, Katsnelson MI, Fasolino A, Phys. Rev. B, 91(4) (2015)
  49. Thomas S, Ajith KM, Lee SU, Valsakumar MC, RSC Adv., 8(48), 27283 (2018)
  50. Thomas S, Ajith KM, Valsakumar MC, J. Phys. Condens. Matter, 28(29), 295302 (2016)
  51. Mortazavi B, Ahzi S, Carbon, 63, 460 (2013)
  52. Wei YJ, Wu JT, Yin HQ, Shi XH, Yang RG, Dresselhaus M, Nat. Mater., 11(9), 759 (2012)
  53. Zhang P, Ma LL, Fan FF, Zeng Z, Peng C, Loya PE, Liu Z, Gong YJ, Zhang JN, Zhang X, Ajayan PM, Zhu T, Lou J, Nat. Commun., 5 (2014)
  54. Zhao SJ, Xue JM, J. Phys. D-Appl. Phys., 46(13), 145001 (2013)
  55. Thomas S, Lee CH, Jana S, Jun BS, Lee SU, J. Phys. Chem. C, 123(35), 21345 (2019)
  56. Baker DR, Verbrugge MW, J. Electrochem. Soc., 159(8), A1341 (2012)
  57. Maire P, Kaiser H, Scheifele W, Novak P, J. Electroanal. Chem., 644(2), 127 (2010)
  58. Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G, J. Phys. Chem. Lett., 1(8), 1176 (2010)
  59. Siroma Z, Sato T, Takeuchi T, Nagai R, Ota A, Ioroi T, J. Power Sources, 316, 215 (2016)
  60. Wang Y, Page AJ, Nishimoto Y, Qian HJ, Morokuma K, Irle S, J. Am. Chem. Soc., 133(46), 18837 (2011)