화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 385-392, January, 2020
Fabrication of arrangement-controlled and vertically grown ZnO nanorods by metal nanotransfer printing
E-mail:
Vertically aligned ZnO nanorods have been widely investigated for use in piezoelectric generators, photovoltaic devices, nanotemplates, photoelectrochemical applications, etc. In addition to vertical alignment, intentional arrangement of ZnO nanorods according to a careful design can enhance the device performance. In this work, we used metal nanotransfer printing to fabricate arrangement- controlled and vertically grown ZnO nanorods on both hard and flexible substrates. Highly vertical growth and periodical arrangement of the ZnO nanorods were confirmed by microscope images. Their crystallinity and photoluminescence characteristics were also investigated. Transmission spectra of the substrates show the enhancement of optical transmission after the nanorod growth. We believe that this fabrication technique lends itself to simple fabrication of arrangement-controlled and vertically grown one-dimensional nanostructures on both hard and flexible substrates for application in solar cells, water splitting, metamaterials, etc.
  1. Wang X, Summers CJ, Wang ZL, Nano Lett., 4, 423 (2004)
  2. Yu S, Yuen C, Lau S, Park WI, Yi GC, Appl. Phys. Lett., 84, 3241 (2004)
  3. Fan Z, Wang D, Chang PC, Tseng WY, Lu JG, Appl. Phys. Lett., 85, 5923 (2004)
  4. Wang HT, Kang BS, Ren F, Tien LC, Sadik P, Norton D, Pearton S, Lin J, Appl. Phys. Lett., 86, 243503 (2005)
  5. Lee WS, Choi JH, Park I, Lee J, Langmuir, 28, 17851 (2012)
  6. Bai S, Wu WW, Qin Y, Cui NY, Bayerl DJ, Wang XD, Adv. Funct. Mater., 21(23), 4464 (2011)
  7. Yi J, Lee JM, Park WI, Sens. Actuators B-Chem., 155, 264 (2011)
  8. Jeong H, Kim KS, Kim YH, Jeong H, Song H, Lee KH, Jeong MS, Wang D, Jung GY, Nanotechnology, 22, 275310 (2011)
  9. Lee C, Lee T, Lyu S, Zhang Y, Ruh H, Lee H, Appl. Phys. Lett., 81, 3648 (2002)
  10. Li L, Zhai T, Bando Y, Golberg D, Nano Energy, 1, 91 (2012)
  11. Moniz SJ, Zhu J, Tang J, Adv. Eng. Mater., 4, 130159 (2014)
  12. Song H, Jo K, Jung BY, Jung GY, Nano Res., 7, 104 (2014)
  13. Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M, Nano Lett., 4, 1247 (2004)
  14. Fan HJ, Fuhrmann B, Scholz R, Syrowatka F, Dadgar A, Krost A, Zacharias M, J. Cryst. Growth, 287(1), 34 (2006)
  15. Kim HJ, Kim Y, Jeong JH, Choi JH, Lee J, Choi DG, J. Mater. Chem. A, 3, 16621 (2015)
  16. Hwang SH, Zhao ZJ, Jeon S, Kang H, Ahn J, Jeong JH, Nanoscale, 11, 11128 (2019)
  17. Sun Y, Fuge GM, Ashfold MNR, Chem. Phys. Lett., 396(1-3), 21 (2004)
  18. Liu B, Zeng HC, J. Am. Chem. Soc., 125(15), 4430 (2003)
  19. Guo M, Diao P, Cai S, J. Solid State Chem., 178, 1864 (2005)
  20. Chong E, Kim S, Choi JH, Choi DG, Jung JY, Jeong JH, Lee ES, Lee J, Park I, Lee J, Nanoscale Res. Lett., 9, 1 (2014)
  21. Park C, Lee J, Chang WS, J. Phys. Chem. C, 119, 16984 (2015)
  22. Gwon M, Lee E, Kim DW, Yee KJ, Lee MJ, Kim YS, Opt. Express, 19, 5895 (2011)
  23. Barnes WL, Dereux A, Ebbesen TW, Nature, 424, 824 (2003)
  24. Genet C, Ebbesen T, Nature, 445, 39 (2007)
  25. Krishnan A, Thio T, Kim T, Lezec H, Ebbesen T, Wolff P, Pendry J, Martin-Moreno L, Garcia-Vidal F, Opt. Commun., 20, 1 (2001)
  26. Chen Q, Cumming DR, Opt. Express, 18, 14056 (2010)
  27. Moon YG, Do YS, Lee MH, Hwang BY, Jeong DJ, Ju BK, Choi KC, Sci. Rep., 7, 15206 (2017)