화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 488-495, January, 2020
Improved electrical performance and transparency of bottom-gate, bottom-contact single-walled carbon nanotube transistors using graphene source/drain electrodes
E-mail:, ,
A highly transparent and high-performance random-network single-walled carbon nanotubes (r- SWCNTs) transistor was successfully fabricated by using chemical vapor deposition-grown graphene source/drain (S/D) electrodes. The bottom-gate, bottom-contact geometry was selected for the graphene S/D contact r-SWCNT (Gr-SWCNT) transistor because of its enhanced gate modulation and good sustainability. A palladium S/D contact r-SWCNT (Pd-SWCNT) transistor with the same device geometry was also fabricated for a comparative study. The transmission line method demonstrated that the resistivity of graphene was small enough (~0.95 Ω μm) to be used as S/D electrodes in a single transistor device, and the contact resistance of Gr-SWCNTs was much lower than that of Pd-SWCNTs. Particularly, the correlation between the applied gate voltage and the sheet resistance is strongly dependent on the r-SWCNT film density. The resulting Gr-SWCNT transistor exhibits high mobility and good on/off current ratio compared to the Pd-SWCNT transistor. The high charge injection originated from the ohmic contact behavior and dense r-SWCNT channel formation by the enhancement of selective wetting due to the surface energy matching between the r-SWCNT semiconductor and graphene S/D electrodes. Thus, this approach can encourage creating highly transparent and high-performance carbon-based field effect transistor.
  1. Kumar S, Murthy JY, Alam MA, Phys. Rev. Lett., 95, 066802 (2005)
  2. Brady GJ, Joo Y, Wu MY, Shea MJ, Gopalan P, Arnold MS, ACS Nano, 8, 11614 (2014)
  3. Choi SJ, Wang C, Lo CC, Bennett P, Javey A, Bokor J, Appl. Phys. Lett., 101, 112104 (2012)
  4. Do JW, Estrada D, Xie X, Chang NN, Mallek J, Girolami GS, Rogers JA, Pop E, Lyding JW, Nano Lett., 13, 5844 (2013)
  5. Xia J, Dong G, Tian B, Yan Q, Zhang H, Liang X, Peng L, Nanoscale, 8, 9988 (2016)
  6. Yoon J, Lim M, Choi B, Kim DM, Kim DH, Kim S, Choi SJ, Sci. Rep., 7, 5453 (2017)
  7. Zaumseil J, Sci. Technol., 30, 74001 (2015)
  8. Kim T, Seong N, Ha J, Kim H, Ha TJ, Hong YJ, Mater. Chem. C, 4, 5461 (2016)
  9. Cao C, Andrews JB, Kumar A, Franklin AD, ACS Nano, 10, 5221 (2016)
  10. Tamaoki M, Kishimoto S, Mizutani T, Appl. Phys. Lett., 103, 033120 (2013)
  11. Chai Y, Chai Y, Hazeghi A, Takei K, Chen HY, Chan PCH, Javey A, Wong HSP, IEEE Trans. Electron Devices, 59, 12 (2012)
  12. Robert PT, Danneau R, New J. Phys., 16, 013019 (2014)
  13. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y, Nano Lett., 9, 1949 (2009)
  14. Jang S, Jang H, Lee Y, Suh D, Baik S, Hong BH, Ahn JH, Nanotechnology, 21, 425201 (2010)
  15. Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan XF, Lee YH, Nat. Mater., 12(5), 403 (2013)
  16. Gangavarapu PRY, Lokesh PC, Bhat KN, Naik AK, IEEE Trans. Electron Devices, 64, 4335 (2017)
  17. Qiu CG, Zhang ZY, Xiao MM, Yang YJ, Zhong DL, Peng LM, Science, 355(6322), 271 (2017)
  18. Li XS, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS, J. Am. Chem. Soc., 133(9), 2816 (2011)
  19. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS, Science, 324, 1312 (2009)
  20. van Oss CJ, Good RJ, Chaudhury MK, Langmuir, 4, 884 (1988)
  21. Rudawska A, Jacniacka E, Int. J. Adhes. Adhes., 29, 451 (2009)
  22. Cohen SS, Thin Solid Films, 104, 361 (1983)
  23. Popescu SM, Barlow AJ, Ramadan S, Ganti S, Ghosh B, Hedley J, ACS Appl. Mater. Interfaces, 8, 31359 (2016)
  24. Bharadwaj BK, Nath D, Pratap R, Raghavan S, Nanotechnology, 27, 205705 (2016)
  25. Green AA, Hersam MC, Nano Lett., 9, 4031 (2009)
  26. Das A, Chakraborty B, Sood AK, Bull. Mater. Sci., 31, 579 (2008)
  27. Song SM, Kim TY, Sul OJ, Shin WC, Cho BJ, Appl. Phys. Lett., 104, 183506 (2014)
  28. Nagashio K, Nishimura T, Kita K, Toriumi A, Int. Electron Devices Meet., 9, 565 (2009)
  29. Ding ZB, Wu F, Wang YC, Jiang H, J. Chem. Phys., 142, 214706 (2015)
  30. Shiraishi M, Ata M, Carbon, 39, 1913 (2001)
  31. Oh SJ, Cheng Y, Zhang J, Shimoda H, Zhou O, Appl. Phys. Lett., 82, 2521 (2003)
  32. Bardecker JA, Afzali A, Tulevski GS, Graham T, Hannon JB, Jen AKY, J. Am. Chem. Soc., 130(23), 7226 (2008)
  33. Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A, Nano Lett., 11, 5408 (2011)
  34. LeMieux MC, Sok S, Roberts ME, Opatkiewicz JP, Liu D, Barman SN, Patil N, Mitra S, Bao Z, ACS Nano, 3, 4089 (2009)
  35. Qiu CG, Liu F, Xu L, Deng B, Xiao MM, Si J, Lin L, Zhang ZY, Wang J, Guo H, Peng HL, Peng LM, Science, 361(6400), 387 (2018)
  36. Pimparkar N, Cao Q, Kumar S, Murthy JY, RogersJ J, Alam MA, IEEE Electron Device Lett., 28, 157 (2007)
  37. Cook BG, French WR, Varga K, Appl. Phys. Lett., 101, 153501 (2012)