- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.81, 488-495, January, 2020
Improved electrical performance and transparency of bottom-gate, bottom-contact single-walled carbon nanotube transistors using graphene source/drain electrodes
E-mail:, ,
A highly transparent and high-performance random-network single-walled carbon nanotubes (r-
SWCNTs) transistor was successfully fabricated by using chemical vapor deposition-grown graphene source/drain (S/D) electrodes. The bottom-gate, bottom-contact geometry was selected for the graphene S/D contact r-SWCNT (Gr-SWCNT) transistor because of its enhanced gate modulation and good sustainability. A palladium S/D contact r-SWCNT (Pd-SWCNT) transistor with the same device geometry was also fabricated for a comparative study. The transmission line method demonstrated that the resistivity of graphene was small enough (~0.95 Ω μm) to be used as S/D electrodes in a single transistor device, and the contact resistance of Gr-SWCNTs was much lower than that of Pd-SWCNTs. Particularly, the correlation between the applied gate voltage and the sheet resistance is strongly dependent on the r-SWCNT film density. The resulting Gr-SWCNT transistor exhibits high mobility and good on/off current ratio compared to the Pd-SWCNT transistor. The high charge injection originated from the ohmic contact behavior and dense r-SWCNT channel formation by the enhancement of selective wetting due to the surface energy matching between the r-SWCNT semiconductor and graphene S/D electrodes. Thus, this approach can encourage creating highly transparent and high-performance carbon-based field effect transistor.
Keywords:Random-network carbon nanotube;Graphene;Bottom-gate bottom-contact;Transmission line method;Transparent transistor
- Kumar S, Murthy JY, Alam MA, Phys. Rev. Lett., 95, 066802 (2005)
- Brady GJ, Joo Y, Wu MY, Shea MJ, Gopalan P, Arnold MS, ACS Nano, 8, 11614 (2014)
- Choi SJ, Wang C, Lo CC, Bennett P, Javey A, Bokor J, Appl. Phys. Lett., 101, 112104 (2012)
- Do JW, Estrada D, Xie X, Chang NN, Mallek J, Girolami GS, Rogers JA, Pop E, Lyding JW, Nano Lett., 13, 5844 (2013)
- Xia J, Dong G, Tian B, Yan Q, Zhang H, Liang X, Peng L, Nanoscale, 8, 9988 (2016)
- Yoon J, Lim M, Choi B, Kim DM, Kim DH, Kim S, Choi SJ, Sci. Rep., 7, 5453 (2017)
- Zaumseil J, Sci. Technol., 30, 74001 (2015)
- Kim T, Seong N, Ha J, Kim H, Ha TJ, Hong YJ, Mater. Chem. C, 4, 5461 (2016)
- Cao C, Andrews JB, Kumar A, Franklin AD, ACS Nano, 10, 5221 (2016)
- Tamaoki M, Kishimoto S, Mizutani T, Appl. Phys. Lett., 103, 033120 (2013)
- Chai Y, Chai Y, Hazeghi A, Takei K, Chen HY, Chan PCH, Javey A, Wong HSP, IEEE Trans. Electron Devices, 59, 12 (2012)
- Robert PT, Danneau R, New J. Phys., 16, 013019 (2014)
- Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y, Nano Lett., 9, 1949 (2009)
- Jang S, Jang H, Lee Y, Suh D, Baik S, Hong BH, Ahn JH, Nanotechnology, 21, 425201 (2010)
- Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan XF, Lee YH, Nat. Mater., 12(5), 403 (2013)
- Gangavarapu PRY, Lokesh PC, Bhat KN, Naik AK, IEEE Trans. Electron Devices, 64, 4335 (2017)
- Qiu CG, Zhang ZY, Xiao MM, Yang YJ, Zhong DL, Peng LM, Science, 355(6322), 271 (2017)
- Li XS, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS, J. Am. Chem. Soc., 133(9), 2816 (2011)
- Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS, Science, 324, 1312 (2009)
- van Oss CJ, Good RJ, Chaudhury MK, Langmuir, 4, 884 (1988)
- Rudawska A, Jacniacka E, Int. J. Adhes. Adhes., 29, 451 (2009)
- Cohen SS, Thin Solid Films, 104, 361 (1983)
- Popescu SM, Barlow AJ, Ramadan S, Ganti S, Ghosh B, Hedley J, ACS Appl. Mater. Interfaces, 8, 31359 (2016)
- Bharadwaj BK, Nath D, Pratap R, Raghavan S, Nanotechnology, 27, 205705 (2016)
- Green AA, Hersam MC, Nano Lett., 9, 4031 (2009)
- Das A, Chakraborty B, Sood AK, Bull. Mater. Sci., 31, 579 (2008)
- Song SM, Kim TY, Sul OJ, Shin WC, Cho BJ, Appl. Phys. Lett., 104, 183506 (2014)
- Nagashio K, Nishimura T, Kita K, Toriumi A, Int. Electron Devices Meet., 9, 565 (2009)
- Ding ZB, Wu F, Wang YC, Jiang H, J. Chem. Phys., 142, 214706 (2015)
- Shiraishi M, Ata M, Carbon, 39, 1913 (2001)
- Oh SJ, Cheng Y, Zhang J, Shimoda H, Zhou O, Appl. Phys. Lett., 82, 2521 (2003)
- Bardecker JA, Afzali A, Tulevski GS, Graham T, Hannon JB, Jen AKY, J. Am. Chem. Soc., 130(23), 7226 (2008)
- Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A, Nano Lett., 11, 5408 (2011)
- LeMieux MC, Sok S, Roberts ME, Opatkiewicz JP, Liu D, Barman SN, Patil N, Mitra S, Bao Z, ACS Nano, 3, 4089 (2009)
- Qiu CG, Liu F, Xu L, Deng B, Xiao MM, Si J, Lin L, Zhang ZY, Wang J, Guo H, Peng HL, Peng LM, Science, 361(6400), 387 (2018)
- Pimparkar N, Cao Q, Kumar S, Murthy JY, RogersJ J, Alam MA, IEEE Electron Device Lett., 28, 157 (2007)
- Cook BG, French WR, Varga K, Appl. Phys. Lett., 101, 153501 (2012)