화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.103, No.19, 8087-8103, 2019
A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma
Trichothecenes are sesquiterpene toxins produced by diverse fungi, including some species of Trichoderma that are potential plant disease biocontrol agents. Trichoderma arundinaceum produces the trichothecene harzianum A (HA), which consists of the core trichothecene structure (12,13-epoxytrichothec-9-ene, EPT) with a linear polyketide-derived substituent (octa-2,4,6-trienedioyl) esterified to an oxygen at carbon atom 4. The genes required for biosynthesis of EPT and the eight-carbon polyketide precursor of the octa-2,4,6-trienedioyl substituent, as well as for esterification of the substituent to EPT have been described. However, genes required for conversion of the polyketide (octa-2,4,6-trienoic acid) to octa-2,4,6-trienedioyl-CoA, the immediate precursor of the substituent, have not been described. Here, we identified 91 cytochrome P450 monooxygenase genes in the genome sequence of T. arundinaceum, and provided evidence from gene deletion, complementation, cross-culture feeding, and chemical analyses that one of them (tri23) is required for conversion of octa-2,4,6-trienoic acid to octa-2,4,6-trienedioyl-CoA. The gene was detected in other HA-producing Trichoderma species, but not in species of other fungal genera that produce trichothecenes with an octa-2,4,6-trienoic acid-derived substituent. These findings indicate that tri23 is a trichothecene biosynthetic gene unique to Trichoderma species, which in turn suggests that modification of octa-2,4,6-trienoic acid during trichothecene biosynthesis has evolved independently in some fungi.