Chinese Journal of Chemical Engineering, Vol.27, No.7, 1608-1617, 2019
Characterizing the catalyst fluidization with field synergy to improve the amine absorption for CO2 capture
There are great interests to capture the CO2 to control the greenhouse gas emission. Amine absorption of CO2 is being taken as an effective way to capture CO2 in industry. However, the amine absorption of CO2 is cost-ineffective due to great energy consumption and solution consumption. In order to reduce the capture cost, catalyst fluidization is proposed here to intensify the mass transfer and heat transfer. Catalyst fluidization with field synergy and DFT model is developed by incorporating the effects of catalyst reaction kinetics, drag force and multi-field into the mass transfer, heat transfer, fluid flow and catalyst collision. Experiments with an improved distributor are performed well to validate the model. The reaction kinetics is determined by the DFT simulation and experiment. The mass transfer coefficient in the fluidized reactor is identified as 17% higher than the conventional packed reactor. With the field synergy of catalyst fluidization, the energy consumption for CO2 desorption is reduced by 9%. Stepwise operation and inclination reactor are used to improve catalyst fluidization process. (C) 2019 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.