화학공학소재연구정보센터
Experimental Heat Transfer, Vol.32, No.6, 584-599, 2019
Combined effects of holes and winglets on chevron plate-fins to enhance the performance of a plate-fin heat exchanger working with nanofluid
The current work reports an experimental study on hydrothermal improvement in a chevron plate-fin heat exchanger combined with holes and winglets. The experiments are performed for water flow through a test square duct fitted with enhanced chevron plate-fins for the Reynolds number from 4000 to 10000. Characteristics of the enhanced chevron plate-fins include three waviness aspect ratios and four different arrangements of holes and winglets at a constant diameter of holes and width/height of winglets. An overall performance factor is applied to obtain the optimal geometry. Then, only the optimal geometries are applied to find out the effect of Al2O3/water nanofluid flow on the performance of a plate-fin heat exchanger. In comparison to simple chevron plate-fins, the enhanced ones would increase the Nusselt number by a factor between 1.05% and 1.6%. In addition, simultaneous application of the optimal enhanced chevron plate-fins and the nanofluid could increase the Nusselt number. The best working conditions of this system are detected for the nanofluid at a weight fraction of 0.3%.