International Journal of Hydrogen Energy, Vol.44, No.49, 26794-26806, 2019
Fabrication of a ternary PANI@Fe3O4@CFs nanocomposite as a high performance electrode for solid-state supercapacitors
In this work, a solid-state high performance supercapacitor is fabricated based on a ternary polyaniline@Fe3O4@carbon fibers nanocomposite. To prepare the polyaniline@Fe3O4@carbon fibers electrodes, a two-step method including electrophoretic deposition of Fe3O4 nanoparticles on carbon fibres followed by an in situ polymerization process of polyaniline is utilized. The results show that the polyaniline@Fe3O4@carbon fibers nanocomposite with a layer by layer microstructure is successfully formed. The fabricated nanocomposite represents a specific surface area of 3.12 m(2)g(-1). The electrochemical measurements in a three-electrode configuration reveals a high specific capacitance of 245.5 F g(-1) at 0.5 A g(-1) and an excellent cycle stability (82.44% after 1000 cycle) of the polyaniline@Fe3O4@carbon fibers electrode. The as-fabricated solid-state supercapacitor based on the polyaniline@Fe3O4@carbon fiber nanocomposite cloth with a surface area of 25 cm(2) powers up a blue light-emitting diode for 4 min and delivers a high energy density of 78.6 Wh.kg(-1) at a power density of 1047.5 W kg(-1). (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Supercapacitor;Carbon fiber;Nanocomposites;Microstructural analysis;Electrochemical analysis