화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.128, No.3, 302-306, 2019
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) generates 2-phosphoglycolate (2PG) as one of the metabolites from the Calvin-Benson-Bassham (CBB) cycle. In this study, we focused on the fact that glycolate (GL) derived from 2PG can be incorporated into the bacterial polyhydroxyalkanoate (PHA) as the monomeric constituent by using the evolved PHA synthase (PhaC1(Ps)STQK). In this study, the function of the RuBisCO-mediated pathway for GL-based PHA synthesis was evaluated using Escherichia coli JW2946 with the deletion of glycolate oxidase gene (Delta glcD) as the model system. The genes encoding RuBisCO, phosphoribulokinase and 2PG phosphatase (PGPase) from several photosynthetic bacteria were introduced into E. coli, and the cells were grown on xylose as a sole carbon source. The functional expression of RuBisCO and relevant enzymes was confirmed based on the increases in the intracellular concentrations of RuBP and GL. Next, PHA biosynthetic genes encoding PhaC1(Ps)STQK, propionyl-CoA transferase and 3-hydroxybutyryl(3HB)-CoA-supplying enzymes were introduced. The cells accumulated poly(GL-co-3HB)s with GL fractions of 7.8-15.1 mol%. Among the tested RuBisCOs, Rhodosprium rubrum and Synechococcus elongatus PCC7942 enzymes were effective for P(GL-co-3HB) production as well as higher GL fraction. The heterologous expression of PGPase from Synechocystis sp. PCC6803 and R. rubrum increased GL fraction in the polymer. These results demonstrated that the RuBisCO-mediated pathway is potentially used to produce GL-based PHA in not only E. coli but also in photosynthetic organisms. (C) 2019, The Society for Biotechnology, Japan. All rights reserved.