Journal of Catalysis, Vol.374, 36-42, 2019
Visible light-induced diastereoselective semihydrogenation of alkynes to cis-alkenes over an organically modified titanium(IV) oxide photocatalyst having a metal co-catalyst
Hydrogen (H-2)-free and poison (lead and quinoline)-free semihydrogenation of alkynes to cis-alkenes under gentle conditions is one of the challenges to be solved. In this study, a titanium(IV) oxide photocatalyst having two functions (visible light responsiveness and semihydrogenation activity) was prepared by modification with 2,3-dihydroxynaphthalene (DHN) and a copper (Cu) co-catalyst, respectively. The photocatalyst (DHN/TiO2-Cu) showed high performance for diastereoselective semihydrogenation of alkynes to cis-alkenes in water-acetonitrile solution under visible light irradiation without the use of H-2 and poisons. Alkynes having reducible functional groups were converted to the corresponding alkenes with the functional groups being preserved. The addition of water to acetonitrile changed the amount of alkynes adsorbed on the photocatalyst, which was a decisive factor determining the rate of hydrogenation. A relatively large apparent activation energy, 27 kJ mol(-1), was obtained by a kinetic study, indicating that the rate-determining step of this reaction was not an electron production process but a thermal catalytic semihydrogenation process over the Cu co-catalyst. Semihydrogenation and hydrogen evolution occurred competitively on Cu metals and the former became predominant at slightly elevated temperatures, which is discussed on the basis of the kinetic parameters of two reactions. (C) 2019 Elsevier Inc. All rights reserved.