Journal of Colloid and Interface Science, Vol.556, 214-223, 2019
Polymeric structure optimization of g-C3N4 by using confined argon-assisted highly-ionized ammonia plasma for improved photocatalytic activity
The optimization of the polymeric structure and the modulation of surface amino groups in graphitic carbon nitride (g-CN) are critical but challenging in improving the photoelectric and photocatalytic performances of this polymer semiconductor. Ammonia plasma treatment may provide a fast and useful approach to optimize g-CN materials yet is seriously restricted by the low ionization ability of ammonia. Herein, a confined fast and environmental-friendly ammonia plasma method based on argon-assisted high ionization of NH3 was developed for efficient modification of raw g-CN. Compared with the weakly-ionized pure ammonia plasma which can only introduce amino group onto the surface g-CN, the argon-assisted highly-ionized ammonia plasma treatment obviously contributes to the comprehensively polymeric structure optimization of g-CN, and thus plays a key role in enhancing its light-harvesting and decelerating the recombination of the photogenerated charge carriers. As a result, the argon-assisted highly-ionized ammonia plasma-treated g-CN-Ar+NH3 outperformed the raw g-CN by a 2.5-fold higher photocatalytic reduction of hexavalent chromium and a remarkable 3.8-fold higher photocatalytic H-2 evolution activity (up to 957.8 mu mol.h(-1)-g(-1)) under visible light irradiation. Our findings suggest the great prospects of this novel highly-ionized ammonia plasma treatment method in the controllable modification of semiconductors and polymers. (C) 2019 Elsevier Inc. All rights reserved.
Keywords:Graphitic carbon nitride;Polymeric structure optimization;Surface modification;Ammonia plasma;Argon-assisted ionization