화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.6, 719-725, December, 2019
활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향
Effects of Oxygen Functional Groups introduced onto Activated Carbon Fibers on Gas Sensing Property of Chemical Warfare Agent
E-mail:
초록
본 실험에서는 활성탄소섬유에 산소플라즈마 처리를 실시하여 산소작용기 도입 함량에 따른 유독성 화학작용제의 모사 가스인 dimethyl methylphosphonate (DMMP) 감응특성에 대하여 고찰하였다. 산소플라즈마 처리 유량이 증가할수록 활성탄소섬유 표면에 산소가 6.90%에서 최대 36.6%까지 도입되어 DMMP 가스 감응특성에 영향을 미치는 -OH가 증가하였다. 그러나 유량이 증가할수록 산소플라즈마 처리 시 발생한 산소 활성종으로 인하여 활성탄소섬유 표면에 식각이 발생하여 비표면적은 감소하는 경향을 보였다. DMMP 가스센서의 저항변화율은 산소플라즈마 처리 유량이 증가함에 따라 4.2%에서 최대 25.1%까지 증가하였다. 이는 산소플라즈마 처리로 인하여 활성탄소섬유에 발달된 -OH와 DMMP 가스의 수소결합으로 인한 것이라 여겨진다. 따라서 산소플라즈마 처리는 상온에서 유독성화학작용제 가스를 감지하기 위한 중요한 표면처리 방법 중 하나라고 판단된다.
In this study, activated carbon fibers were treated with oxygen plasma to investigate gas sensing properties of the dimethyl methylphosphonate (DMMP), which is a simulant gas of the chemical warfare agent, according to oxygen functional group contents. As the flow rate of oxygen plasma treatment increased, oxygen groups were introduced to the surface of activated carbon fibers from 6.90 up to 36.6%, increasing the -OH group which influences the DMMP gas sensing properties. However, as the flow rate of oxygen plasma increases, the specific surface area tends to decrease because etching on the surface of activated carbon fibers occurs due to active species generated during the oxygen plasma treatment. The resistance change rate of the DMMP gas sensor increased from 4.2 up to 25.1% as the oxygen plasma treatment flow rate increased. This is attributed to the hydrogen bonding between DMMP gas and introduced hydroxyl functional group on activated carbon fibers by the oxygen plasma treatment. Therefore, the oxygen plasma is considered to be one of the important surface treatment methods for detecting chemical warfare agents at room temperature.
  1. Ganji MD, Dalirandeh Z, Khosravi A, Fereidoon A, Mater. Chem. Phys., 145(1-2), 260 (2014)
  2. Alali KT, Liu J, Aliebawi K, Liu P, Chen R, Li R, Zhang H, Zhou L, Wang J, J. Aollys Compd., 793, 31 (2019)
  3. Jun J, Lee JS, Shin DH, Oh J, Kim W, Fabrication WN, J. Mater. Chem., 33, 17335 (2017)
  4. Quintero YC, Nagarajan R, Surf. Sci., 675, 26 (2018)
  5. Alizadeh T, Soltani LH, Sens. Actuators B-Chem., 234, 361 (2016)
  6. Kim MJ, Lee SM, Lee KM, Jo HJ, Choi SS, Lee YS, J. Ind. Eng. Chem., 60, 341 (2018)
  7. Kim MJ, Kim KH, Yang X, Yu YH, Lee YS, J. Ind. Eng. Chem., 76, 181 (2019)
  8. Lee JS, Kwon OS, Park SJ, Park EY, You SA, Yoon H, Jang J, ACS Nano, 5, 7992 (2011)
  9. Yoo R, Yoo S, Lee D, Kim J, Cho S, Lee W, Sens. Actuators B-Chem., 240, 1099 (2017)
  10. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS, Carbon, 49, 2235 (2011)
  11. Kang SC, Im JS, Lee YS, Appl. Chem. Eng., 22(3), 243 (2011)
  12. Lee S, Park MS, Jung MJ, Lee YS, Trans. Korean Hydrogen New Energy Soc., 27, 298 (2016)
  13. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4), 432 (2015)
  14. Kim SD, Kim JW, Im JS, Cho SH, Lee YS, Trans. Korean Hydrogen New Energy Soc., 17, 47 (2006)
  15. Bai BC, Lee HU, Lee CW, Lee YS, Im JS, Chem. Eng. J., 306, 260 (2016)
  16. Jeong JY, Park J, Henins I, Babayan SE, Tu VJ, Selwyn GS, Ding G, Hicks RF, J. Phys. Chem. A, 104(34), 8027 (2000)
  17. Duch J, Mazur M, Cepa MG, Podobinski J, Piskorz W, Kotarba A, Carbon, 137, 425 (2018)
  18. Jung MJ, Ko YY, Kim KH, Lee YS, Appl. Chem. Eng., 28(6), 638 (2017)
  19. Kang SC, Im JS, Lee SH, Bae TS, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 384, 297 (2011)
  20. Jung MJ, Park MS, Lee S, Lee YS, Appl. Chem. Eng., 27(3), 319 (2016)
  21. Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30(2), 160 (2019)
  22. Park SJ, Kim BJ, J. Korean Ind. Eng. Chem., 15(6), 611 (2004)
  23. Kang DH, Kim MJ, Jo HJ, Choi YJ, Lee YS, Appl. Chem. Eng., 29(2), 191 (2018)
  24. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(1), 92 (2015)
  25. Park MS, Kim KH, Kim MJ, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 490, 104 (2016)
  26. Lee SM, Jung MJ, Lee KM, Lee YS, Appl. Chem. Eng., 28(3), 299 (2017)
  27. Hu N, Yang Z, Wang Y, Zhang L, Wang Y, Huang X, Wei H, Wei L, Zhang Y, Nanotechnology, 25, 1-9 (2014).
  28. Morrison SR, Sens. Actuators, 11, 283 (1987)
  29. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR, Sens. Actuators B-Chem., 115, 247 (2006)
  30. Kim MJ, Song EJ, Kim KH, Choi SS, Lee YS, J. Ind. Eng. Chem., 79, 465 (2019)