화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.11, 703-708, November, 2019
태양광 모듈 표면 온도 제어에 따른 백시트 박리 거동
Peeling Behavior of Backsheet according to Surface Temperature of Photovoltaic Module
E-mail:,
In this study, we investigate the relationship between the peeling behavior of the backsheet of a photovoltaic(PV) module and its surface temperature in order facilitate removal of the backsheet from the PV module. At low temperatures, the backsheet does not peel off whereas, at high temperatures, part of the backsheet remains on the surface of the PV module after the peeling process. The backsheet material remaining on the surface of the PV module is confirmed by X-ray diffraction(XRD) analysis to be poly-ethylene(PE). Differential scanning calorimetry(DSC) is also performed to investigate the interfacial characteristics of the layers of the PV module. In particular, DSC provides the melting temperature(Tm) of laminated ethylene vinyl acetate(EVA) and of the backsheet on the PV module. It is found that the backsheet does not peel off below the Tm of ethylene of EVA, while the PE layer of the backsheet remains on the surface of the PV module above the Tm of the PE. Thus, the backsheet is best removed at a temperature between the Tm of ethylene and that of PE layer.
  1. Masson G, Kaizuka I, Report IEA-PVPS T1-34 (2018).
  2. Komoto K, Lee JS, Report IEA-PVPS T12-10 (2018).
  3. European parliament, Council of the European Union, WEEE. Off. J. Eur. Union, L. 197, 38 (2012).
  4. Lee JS, Kang GH, Mag. Korean Sol. Energy Soc., 15, 3 (2015)
  5. Lee JK, Lee JS, Ahn YS, Kang GH, Song HE, Lee JI, Kang MG, Cho CH, Sol. Energy Mater. Sol. Cells, 160, 301 (2017)
  6. Lee JK, Lee JS, Ahn YS, Kang GH, Song HE, Kang MG, Kim YH, Cho CH, Prog. Photovoltaics, 26, 179 (2018)
  7. Geretschlager KJ, Wallner GM, Fischer J, Sol. Energy Mater. Sol. Cells, 144, 451 (2016)
  8. Lee HJ, Park YG, Lee SH, Park JH, Korean Chem. Eng. Res., 56(2), 156 (2018)
  9. Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K, Appl. Therm. Eng., 27, 275 (2007)
  10. Sander M, Dietrich S, Pander M, Ebert M, Bagdahn J, Sol. Energy Mater. Sol. Cells, 111, 82 (2013)
  11. Kim BM, Lee KS, Kim MK, Kang GH, Lee HK, Park MJ(in Korean), Proc. of 2010 KSEE Summer Conference, p. 1255-1256 (2010).
  12. Gambogi WJ, Kopchick JG, Felder TC, MacMaster SW, Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, p.2846-2850 (2013).
  13. Carotenuto G, Nicola SD, Palomba M, Pullini D, Horsewell A, Hansen TW, Nicolais L, Nanotechnology, 23, 485705 (2012)
  14. Saez MR, Jaramillo LY, Saravanan R, Benito N, Pabon E, Mosquera E, Gracia F, Express Polym. Lett., 11, 899 (2017)
  15. Xie MZ, Jing LQ, Zhou J, Lin JS, Fu HG, J. Hazard. Mater., 176(1-3), 139 (2010)
  16. Kim D, Kim N, Hong WS, Kang H, Lee K, Oh C, New Renewable Energy, 12, 36 (2016)
  17. Polansky R, Pinkerova M, Bartunkova M, Prosr P, J. Electrical Eng., 64, 361 (2013)
  18. Yuliestyan A, Cuadri AA, Garcia-Morales M, Partal P, Mater. Des., 96, 180 (2016)
  19. Reyes-Labarta JA, Olaya MM, Marcilla A, Polymer, 47(24), 8194 (2006)
  20. Demirel B, Yaras A, Elcicek H, BAU Fen Bil. Enst. Dergisi Cilt, 13, 26 (2011).
  21. Langevin D, Grenet J, Saiter JM, Eur. Polym. J., 30, 339 (1994)
  22. Reyes-Labarta JA, Olaya MM, Marcilla A, J. Appl. Polym. Sci., 102(3), 2015 (2006)
  23. Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C, Environ. Sci. Technol., 43, 2060 (2009)