Journal of Physical Chemistry A, Vol.123, No.41, 8755-8765, 2019
Oxidation State-Dependent Electronic Properties of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules
Comparative studies of a series of sulfur-containing thermally activated delayed fluorescence (TADF) molecules and their oxidized compounds are carried out by means of electronic structure calculations. Aiming at investigating the effects of oxidation of bridged sulfur on the modulation of electronic structures of sulfur-containing TADF molecules, their geometrical structures, singlet (S-1) and triple (T-1) energies and their gap (Delta E-ST), the transition dipole moment, the spin-orbit coupling (SOC) between S-1 and T-1 states, the ionization potentials, and electron affinities are analyzed in detail to determine the structure-property relationships in these investigated TADF molecules and their corresponding oxidized counterparts. The electronic structure calculations show that the oxidation of bridged sulfur into the corresponding sulfoxide and sulfone significantly changes the electronic properties of TADF molecules. Interestingly, a substantial reduction in the singlet-triplet energy difference is possible with an increase in the oxidation state of the sulfur atom in the core. Moreover, the sulfone-containing molecules exhibit both S-1 and T-1 states having a large charge transfer (CT) excitation characteristic, which helps reduce the singlet-triplet energy gap and facilitates the reverse intersystem crossing (RISC) from the triplet state to the singlet state. SOC values increase with an increase in the oxidation state of the sulfur atom. Particularly, a sulfoxide-containing core moiety exhibits higher SOC values when compared with the sulfone-containing acceptor core.