Journal of Physical Chemistry B, Vol.123, No.41, 8800-8813, 2019
Role of Explicit Solvation in the Simulation of Resonance Raman Spectra within Short-Time Dynamics Approximation
In short-time dynamics approximation, relative resonance Raman (RR) intensity of a vibrational mode primarily depends on the magnitude of square of the excited-state gradient along the corresponding normal coordinate, ground-state normal mode eigenvector, and harmonic vibrational wavenumbers. In this study, through simulation of RR spectra of guanosine-5'-monophosphate (GMP) in two pi pi* singlet excited states, we analyze how the explicitly hydrogen-bonded local solvation structure of the chromophore dictates intensities of the RR active modes in an unprecedented manner. We show that the accuracy of the structural model of solvated chromophore plays a decisive role in determining an optimal theoretical method for prediction of the Franck-Condon region of the pi pi* excited states. 9-Methylguanine (9-meG) in complex with six water molecules (9-meG center dot 6H(2)O) is found out to be the most accurate one for describing GMP in two different bright electronic states. We find that explicit hydrogen-bonded water molecules strongly influence computed RR intensities of GMP by modulating both the ground-state normal mode vectors and the excited-state energy gradients. We find that simultaneous inclusion of six explicit waters to describe the solute-solvent interaction near all hydration sites is essential for reliable prediction of the features of RR spectra in L-b and B-b electronic states of GMP.