화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.57, No.18, 1255-1262, 2019
Classifying formulations of crosslinked polyethylene pipe by applying machine-learning concepts to infrared spectra
Crosslinked polyethylene (PEX-a) pipes are emerging as promising replacements for traditional metal or concrete pipes used for water, gas, and sewage transport. Understanding the relationship between pipe formulation and performance is critical to their proper design and implementation. We have developed a methodology using principal component analysis (PCA) and the machine learning techniques of k-means clustering and support vector machines (SVM) to compare and classify different PEX-a pipe formulations based on characteristic infrared (IR) spectroscopy absorbance peaks. The application of PCA revealed that a large percentage (89%) of the total variance could be explained by the first three principal components (PC1-PC3), with distinct clustering of the data for each formulation. By examining the contribution of the individual IR bands to the PCs, we determined that PC1 could be attributed to different peroxide crosslinkers, whereas PC2 and PC3 could be attributed to differences in the additives. Using the PCA results as input to k-means clustering and SVM resulted in very high accuracy of classifying the different pipe formulations. Our approach highlights the advantages of using PCA and machine learning techniques to characterize different formulations of PEX-a pipes, which is important to achieve a detailed understanding of the pipe formulation and manufacturing process. (c) 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1255-1262