Journal of the American Chemical Society, Vol.141, No.37, 14788-14797, 2019
Metal-Single-Molecule-Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes
Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on < 111 > than on < 100 >, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-molecule-semiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30-400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal- semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.