화학공학소재연구정보센터
Langmuir, Vol.35, No.32, 10491-10504, 2019
Wool-Like Fibrous Nonwoven Mesh with Ethanol-Triggered Transition between Antiwater and Antioil Superwetting States for Immiscible and Emulsified Light Oil-Water Separation
Superwetting antiwater and antioil textiles are not only very attractive for efficient and cost-effective oil-water separation but also very challenging to be prepared. A well-designed polystyrene wool-like fibrous mesh was fabricated by a controlled electrospinning setup to provide simple and quick reversible ethanol-triggered switching between antiwater and antioil superwetting states in various media such as air, water, and oil. Additionally, it exhibits a long-term stability against acid, alkaline, and salt at high concentrations. Such characteristics will prove unusual capabilities for controllable gravity-driven separation of both immiscible and emulsified oil-water mixtures with a separation efficiency more than 99.0%, as well as a prolonged antifouling property and an excellent recyclability; all will be advantageous for technical applications including oil removing and water removing. Furthermore, light oil-polluted water and water-soluble pollutants can be simultaneously cleaned well by the antioil mesh acting in the water-removing mode.