Nature Nanotechnology, Vol.14, No.10, 981-+, 2019
High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles
The concept of plasmonic hotspots is central to the interpretation of the surface-enhanced Raman scattering (SERS) effect. Although plasmonic hotspots are generally portrayed as static features, single-molecule SERS (SM-SERS) is marked by characteristic time-dependent fluctuations in signal intensity. The origin of those fluctuations can be assigned to a variety of dynamic and complex processes, including molecular adsorption or desorption, surface diffusion, molecular reorientation and metal surface reconstruction. Since each of these mechanisms simultaneously contributes to a fluctuating SERS signal, probing their relative impact in SM-SERS remains an experimental challenge. Here, we introduce a super-resolution imaging technique with an acquisition rate of 800,000 frames per second to probe the spatial and temporal features of the SM-SERS fluctuations from single silver nanoshells. The technique has a spatial resolution of similar to 7 nm. The images reveal short similar to 10 mu s scattering events localized in various regions on a single nanoparticle. Remarkably, even a fully functionalized nanoparticle was 'dark' more than 98% of the time. The sporadic SERS emission suggests a transient hotspot formation mechanism driven by a random reconstruction of the metallic surface, an effect that dominates over any plasmonic resonance of the particle itself. Our results provide the SERS community with a high-speed experimental approach to study the fast dynamic properties of SM-SERS hotspots in typical room-temperature experimental conditions, with possible implications in catalysis and sensing.