화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.12, 1200-1209, December, 2019
Molecular Dynamics (MD) Simulation of Zwitterion-Functionalized PMMA with Hydrophilic and Antifouling Surface Characteristics
E-mail:
In this study, the effect of surface functionalization of poly (methyl methacrylate) (PMMA) layer using [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide, a zwitterion comonomer, on PMMA’s hydrophilicity and antifouling properties was investigated via the utilization of a molecular dynamics (MD) simulation. The modified layers were composed of PMMA chains with 30 repeating units, which were surface functionalized using various amount of zwitterionic comonomers, i.e. 0, 6.66, 9.99 and 16.65 wt%. In this case, the hydrophobicity of the resultant layer was evaluated calculating the contact angle values. Additionally, the calculated contact angles using water and diiodomethane over the PMMA model were compared to experimental values to validate the simulation procedure. To investigate the antifouling property, both the top and bottom models faces were contacted to a given feed composed of a water/hydrocarbon mixed solvent ratio, 60/40 (vol/vol). Likewise, the number density and radial distribution function (RDF) were determined to investigate the change in the solvent molecules repulsion or organic antifouling property of the layer surface, along with increasing the content of the functionalizing groups.
  1. Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Kolinkeova B, Panayiotou C, Appl. Phys. Mater. Sci. Interface, 97, 351 (2009)
  2. Cao LL, Jones AK, Sikka VK, Wu JZ, Gao D, Langmuir, 25(21), 12444 (2009)
  3. Wang Y, Orol D, Owens J, Simpson K, Lee HJ, Mater. Sci. Appl., 4, 347 (2013)
  4. Zhao Y, Liu Y, Xu FX, Barahman M, Lyons AM, Appl. Mater. Interfaces, 7, 2632 (2015)
  5. Lai Y, Gong J, Gong D, Chi L, Linc C, Chen Z, J. Dyn. Mater. Chem., 22, 7420 (2012)
  6. Xue CH, Jia ST, Zhang J, Ma JZ, Sci. Technol. Adv. Mater., 11, 033002 (2010)
  7. Lam CNC, Wu R, Li D, Hair ML, Neumann AW, Adv. Colloid Interface Sci., 96, 169 (2002)
  8. Lam CNC, Ko RHY, Yu LMY, Ng A, Li D, Hair ML, Neumann AW, J. Colloid Interface Sci., 243(1), 208 (2001)
  9. Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z, Chem. Soc. Rev., 45, 5888 (2016)
  10. He M, Zhou L, Jiao Z, Wu M, Cao J, You X, Cai Z, Su Y, Jiang Z, Acta Biomater., 40, 142 (2016)
  11. Lowe AB, McCormick CL, Chem. Rev., 102(11), 4177 (2002)
  12. Li Q, Imbrogno J, Belfort G, Wang XL, J. Appl. Polym. Sci., 132, 41781 (2015)
  13. Laschewsky A, Polymers, 6, 1544 (2014)
  14. Lolla D, Gorse J, Kisielowski C, Miao J, Taylor PL, Chase GG, Reneker DH, Nanoscale, 8, 120 (2016)
  15. Lee J, Jeong S, Ye Y, Chen V, Vigneswaran S, Leiknes T, Liu ZW, Sep. Purif. Technol., 176, 323 (2017)
  16. Banerjee I, Pangule RC, Kane RS, Adv. Mater., 23(6), 690 (2011)
  17. Rajabzadeh S, Ogawa D, Ohmukai Y, Zhou Z, Shigami T, Matsuyama H, Desalin. Water Treat., 54, 2911 (2014)
  18. Jiang SY, Cao ZQ, Adv. Mater., 22(9), 920 (2010)
  19. Franken ACM, Prevention and Control of Membrane Fouling, Membraan Applicatie Centrum Twente, DSTI, 2009.
  20. Ebro H, Kim YM, Kim JH, J. Membr. Sci., 438, 112 (2013)
  21. Darvishi M, Foroutan M, RSC Adv., 6, 74124 (2016)
  22. Yarovsky I, Aust. J. Phys., 50, 407 (1997)
  23. Plimpton S, J. Comput. Phys., 117, 1 (1995)
  24. Sun H, J. Comput. Chem., 15, 752 (1994)
  25. Sun H, Maple JR, Hagler AT, Am. Chem. Soc., 116, 2978 (1994)
  26. Sun H, Yang J, Ren Y, Tian A, J. Phys. Chem., 104, 4951 (2000)
  27. Sumith YD, A New Algorithm for Contact Angle Estimation in Molecular Dynamics Simulations, International Conference on Nanochannels, Microchannels and Minichannels, 2015.
  28. Shi B, Dhir VK, J. Chem. Phys., 130, 34705 (2009)
  29. Tokuda K, Kotera M, Nishino T, Polym. J., 47, 66 (2015)
  30. Choudhury N, Pettitt BM, J. Am. Chem. Soc., 129(15), 4847 (2007)
  31. Kollman PA, J. Am. Chem. Soc., 33, 889 (2000)
  32. Wang C, Tu Y, Duan M, Xiu P, Li J, Fang H, Sci. Rep., 2, 538 (2012)