화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.1, 54-64, January, 2020
Catalytic oxidation of benzene over alumina-supported Cu-Mn-Ce mixed oxide catalysts
E-mail:
Based on the response surface methodology (RSM), Cu-Mn-Ce catalysts were prepared via the vacuum impregnation method. Also, Their performance in the oxidation of a tar model compound (Benzene, 5,000 ppm) was evaluated. Results show that the optimum condition is CuO-MnO content of 30% and CeO2 content of 4.4% at a calcination temperature of 620 °C for 4.1 h. In this condition, the confirmatory experiment indicates the average carbon conversion rate within half an hour (Xc-0.5h) and four hours (Xc-4h) are 99.5% and 97.1% at 300 °C, respectively, which is in good agreement with the model prediction. XRD, H2-TPR, SEM, and XPS were employed in catalyst characterization. CuO is the primary active metal in the catalysts, which is affected easily by the calcination temperature. A lower calcination temperature tends to cause a weak structure strength, but a higher temperature results in impairing the reducibility. The major roles of CeO2 are displayed in two aspects that CeO2 increases the dispersion of the active metal, enhances the catalyst stability, and increases the oxygen vacancies and improves the oxygen transfer ability. For Cu-Mn-Ce composite catalyst, the catalytic oxidization of benzene complies with the Mars-van Krevelen mechanism (MVK). The content of CuO-MnO determines the number of active sites on the catalyst, which promotes the reduction of catalyst. CeO2 plays an important role in enhancing the oxidization of the catalyst. Therefore, the ratio of CuOMnO to CeO2 in the catalyst will cause a change of the control step of the redox reaction.
  1. Lv X, Xiao J, Shen LH, Zhou YY, Int. J. Hydrog. Energy, 41(47), 21913 (2016)
  2. Haro P, Ollero P, Perales ALV, Vidal-Barrero F, Biofuel. Bioprod. Bior., 7, 551 (2013)
  3. Yan LB, Cao Y, He BS, Chem. Eng. J., 331, 435 (2018)
  4. Aneke M, Wang MH, Energy Procedia, 142, 829 (2017)
  5. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
  6. Lv X, Xiao J, Sun T, Huo X, Song M, Shen L, Korean J. Chem. Eng., 35(2), 394 (2018)
  7. Miyazawa T, Kimura T, Nishikawa J, Kado S, Kunimori K, Tomishige K, Catal. Taday, 115, 254 (2006)
  8. Guan G, Kaewpanha M, Hao X, Abudula A, Renew. Sust. Energ. Rev., 58, 450 (2015)
  9. Xie H, Du Q, Li H, Zhou G, Chen S, Jiao Z, Ren J, Korean J. Chem. Eng., 34(7), 1944 (2017)
  10. Hong SS, Lee GH, Lee GD, Korean J. Chem. Eng., 20(3), 440 (2003)
  11. Li TY, Chiang SJ, Liaw BJ, Chen YZ, Appl. Catal. B: Environ., 103(1-2), 143 (2011)
  12. Yoon SJ, Kim YK, Lee JG, Ind. Eng. Chem. Res., 50(4), 2445 (2011)
  13. Tang WX, Deng YZ, Li WH, Li SD, Wu XF, Chen YF, Catal. Commun., 72, 165 (2015)
  14. Dorr TB, Schmidt S, Drochner A, Vogel H, Chem. Eng. Technol., 40(2), 351 (2017)
  15. Wang YF, Zhang CB, Liu FD, He H, Appl. Catal. B: Environ., 142, 72 (2013)
  16. Rui ZB, Chen CY, Lu YB, Ji HB, Chin. J. Chem. Eng., 22(8), 882 (2014)
  17. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP, Chem. Rev., 119(7), 4471 (2019)
  18. Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117 (2016)
  19. Kim SC, Shim WG, Appl. Catal. B: Environ., 92(3-4), 429 (2009)
  20. Tabakova T, Ilieva L, Petrova P, Venezia AM, Avdeev G, Zanella R, Karakirova Y, Chem. Eng. J., 260, 133 (2015)
  21. Son IH, Lane AM, Johnson DT, J. Power Sources, 124(2), 415 (2003)
  22. Lin J, Guo YF, Li CH, Lu SX, Chen X, Liew KM, Catal. Lett., 148(8), 2348 (2018)
  23. Wang DS, Li YD, J. Am. Chem. Soc., 132, 6280 (2011)
  24. Wang F, Lu GX, Int. J. Hydrog. Energy, 35(13), 7253 (2010)
  25. Jiang ZY, Feng XB, Deng JL, He C, Douthwaite M, Yu YK, Liu J, Hao ZP, Zhao Z, Adv. Funct. Mater., 29, 2230 (2019)
  26. Wang Z, Shen GL, Li JQ, Liu HD, Wang Q, Chen YF, Appl. Catal. B: Environ., 138, 253 (2013)
  27. He C, Yu YK, Yue L, Qiao NL, Li JJ, Shen Q, Yu WJ, Chen JS, Hao ZP, Appl. Catal. B: Environ., 147, 156 (2014)
  28. Kim SC, Park YK, Nah JW, Powder Technol., 266, 292 (2014)
  29. Aziz A, Sajjad M, Kim S, Saifuddin M, Kim KS, Appl. Sci-Basel, 8, 1920 (2018)
  30. Behar S, Gonzalez P, Agulhon P, Quignard F, Swierczynski D, Catal. Taday, 189, 35 (2012)
  31. Yang P, Li JR, Zuo SF, Chem. Eng. Sci., 162, 218 (2017)
  32. Guo YF, Zhao CW, Lin J, Li CH, Lu SX, Catal. Commun., 99, 1 (2017)
  33. Lin J, Guo YF, Chen X, Li CH, Lu SX, Liew KM, Catal. Lett., 148(1), 181 (2018)
  34. Li J, Li Q, Chen X, Li CH, Lu SX, Liew KM, Chem. Eng. J., 371, 267 (2019)
  35. Koike M, Ishikawa C, Li DL, Wang L, Nakagawa Y, Tomishige K, Fuel, 103, 122 (2013)
  36. Liu XW, Zhou KB, Wang L, Wang BY, Li YD, J. Am. Ceram. Soc., 131, 3140 (2009)
  37. Li B, Chen YW, Li L, Kan JW, He S, Yang B, Shen SB, Zhu SM, J. Mol. Catal. A-Chem., 415, 160 (2016)
  38. Chen HH, Yan Y, Shao Y, Zhang HP, Chen HH, AIChE J., 61(2), 620 (2015)
  39. Abdullah AZ, Abu Bakar MZ, Bhatia S, Ind. Eng. Chem. Res., 42(24), 6059 (2003)
  40. Li H, Chen H, Yao MF, Li YD, Ind. Eng. Chem. Res., 52(2), 686 (2013)
  41. Meyer CI, Borgna A, Monzon A, Garetto TF, J. Hazard. Mater., 190(1-3), 903 (2011)
  42. Behar S, Gomez-Mendoza NA, Gomez-Garcia MA, Swierczynski D, Quignard F, Tanchoux N, Appl. Catal. A: Gen., 504, 203 (2015)
  43. Huo XD, Xiao J, Song X, Zhu L, J. Anal. Appl. Pyrolysis, 135, 189 (2018)
  44. Marino F, Schonbrod B, Moreno M, Jobbagy M, Baronetti G, Laborde M, Catal. Taday, 133, 735 (2008)
  45. Zhao HJ, Fang KG, Zhou J, Lin MG, Sun YH, Int. J. Hydrog. Energy, 41(21), 8819 (2016)
  46. Delimaris D, Ioannides T, Appl. Catal. B: Environ., 89(1-2), 295 (2009)
  47. Zheng XC, Zhang XL, Wang XY, Wang SR, Wu SH, Appl. Catal. A: Gen., 295(2), 142 (2005)
  48. Li J, Zhang ZL, Ji YJ, Jin ZY, Zou SY, Zhong ZY, Su FB, Nano Res., 9, 1377 (2016)