화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 261-268, February, 2020
Impact of copper(II) on activation product removal from reactor decommissioning effluents in South Korea
E-mail:
Decommissioning is one of the most important phases in the life of a nuclear reactor, having a major influence on public perception of such technology. Therefore, development of technologies that make decommissioning more safe, effective and efficient is integral to the success of the nuclear industry. In this paper, phosphonic acid functionalised silica has been studied to determine its suitability for treating nuclear decommissioning effluents produced in the HYBRID process, developed in South Korea. Cu2+ recovery from HCl media in both static and dynamic modes was investigated, as well as the effect of Cu2+ on Co2+ and Ni2+ recovery in a column loading system. Isothermal loading studies predicted a maximum loading capacity for Cu2+ of 22.82 mg g-1, however complex loading behaviour was observed. Cu2+ sorption followed pseudo-second order kinetics with rapid uptake. Thermodynamic parameters have been extracted from collected kinetic data. Cu2+ outcompetes both Co2+ and Ni2+ for binding to the silica in column studies, which has implications for the use of phosphonic acid functionalised silica in treating decommissioning effluents. This work presents initial lab scale experiments, but shows the potential of Si based extractants for use in metals recovery in the nuclear industry.
  1. IAEA, Energy, Electricity and Nuclear Power Estimates for the Period up to 2050 Vienna, IAEA, 2018.
  2. Chung JB, Kim ES, Energy Policy, 116, 137 (2018)
  3. Nian V, Prog. Nucl. Energy, 105, 83 (2018)
  4. Seo HW, Sohn W, Jo KH, Ann. Nucl. Energy, 120, 749 (2018)
  5. Kim KW, Kim MJ, Oh MK, Kim J, Sung HH, Foster RI, Lee KY, J. Nucl. Sci. Technol., 00, 1 (2018)
  6. Canner AJ, Pepper SE, Hayer M, Ogden MD, Prog. Nucl. Energy, 104, 271 (2018)
  7. Jung JY, Park SY, Won HJ, Kim SB, Choi WK, Moon JK, Park SJ, Met. Mater. Int., 21(4), 678 (2015)
  8. Morris R, Water Chemistry of Nuclear Reactor Systems 8, ICE Publishing, Bournemouth, UK, pp.452 2000.
  9. Choi WK, Won HJ, Park SY, Kim SB, Jung JY, Moon JK, Waste Management 2015 Pheonix, Arizona, US, Proceedings of Waste Management Symposium 2015, 2015.
  10. Won HJ, Park JS, Jung CH, Park SY, Choi WK, Moon JK, Proceedings of the ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management, Brussels, Belgium, 2018.
  11. Won HJ, Lee WS, Jung CH, Park SY, Choi WK, Moon JK, Asian J. Chem., 26(5), 1327 (2015)
  12. Lumetta GJ, Nash KL, Clark SB, Friese JI, Separations for the Nuclear Fuel Cycle in the 21st Century, American Chemical Society, 2006.
  13. Veliscek-Carolan J, J. Hazard. Mater., 318, 266 (2016)
  14. Amphlett JTM, Sharrad CA, Ogden MD, Chem. Eng. J., 342, 133 (2018)
  15. Moon EM, Ogden MD, Griffith CS, Wilson A, Mata JP, J. Ind. Eng. Chem., 51, 255 (2017)
  16. Akhtar N, Iqbal J, Iqbal M, Eng. Life Sci., 4(2), 171 (2004)
  17. Mahfouz MG, Galhoum AA, Gomaa NA, Abdel-Rehem SS, Atia AA, Vincent T, Guibal E, Chem. Eng. J., 262, 198 (2015)
  18. Pepper SE, Whittle KR, Harwood LM, Cowell J, Lee S, Ogden MD, Cobalt, Sep. Sci. Technol., 53(04), 1 (2017)
  19. Hanzel R, Rajec P, J. Radioanal. Nucl. Chem., 246(3), 607 (2000)
  20. Gholami T, Salavati-niasari M, Bazarganipour M, Superlattices Microstruct., 61, 33 (2013)
  21. Xie F, Lin X, Wu X, Xie Z, Talanta, 74, 836 (2008)
  22. Amphlett JTM, Ogden MD, Foster RI, Syna N, Soldenhoff K, Sharrad CA, Chem. Eng. J., 334, 1361 (2018)
  23. Gregor HP, Taiferi M, Citarel L, Becker EI, Ind. Eng. Chem., 44(12), 2834 (1952)
  24. Abderrahim O, Didi MA, Villemin D, J. Radioanal. Nucl. Chem., 279(1), 237 (2009)
  25. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
  26. Koresh J, Soffer A, J. Colloid Interface Sci., 92(2), 517 (1983)
  27. Manu V, Mody HM, Bajaj HC, Jasra RV, Ind. Eng. Chem. Res., 48(19), 8954 (2009)
  28. Yang H, Xu R, Xue XM, Li FT, Li GT, J. Hazard. Mater., 152(2), 690 (2008)
  29. Kumar R, Barakat MA, Daza YA, Woodcock HL, Kuhn JN, J. Colloid Interface Sci., 408, 200 (2013)
  30. Wang LY, Yang LQ, Li YF, Zhang Y, Ma XJ, Ye ZF, Chem. Eng. J., 163(3), 364 (2010)
  31. Bai L, Hu H, Zhang W, Fu J, Lu Z, Liu M, Jiang H, Zhang L, Chen Q, Tan P, J. Mater. Chem., 22(33), 17293 (2012)
  32. Mohapatra M, Khatun S, Anand S, Chem. Eng. J., 155(1-2), 184 (2009)
  33. Li H, Li J, Chi Z, Ke W, Procedia Environ. Sci, 16(Iii), 646 (2012)
  34. Kumar PS, Senthamarai C, Durgadevi A, Environ. Prog. Sustain. Energy, 33(1), 28 (2014)
  35. El-Batouti M, Sadek OM, Assaad FF, J. Colloid Interface Sci., 259(2), 223 (2003)
  36. Dong L, Yanyan L, Junxia Y, Yigang D, J. Dispersion Sci. Technol., 38(2), 180 (2017)
  37. Curkovic L, Trgo M, Rozic M, Medvidovic NV, Indian J. Chem. Technol., 18(2), 137 (2011)
  38. Amphlett JTM, Sharrad CA, Foster RI, Ogden MD, J. South African Inst. Min. Metall., 12, 1251 (2018)
  39. Smith RM, Martell AE, Motekaitis RJ, NIST Standard Reference Database 46 Gaithersburg, MD, National Institute of Standards and Technology, 2004.
  40. Mukherji AK, Z. Anal. Chem., 226(5), 401 (1966)
  41. Yamabe K, Ihara T, Jyo A, Sep. Sci. Technol., 36(15), 3511 (2001)