화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 341-348, February, 2020
Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers
E-mail:
A new, highly sensitive surface enhanced Raman scattering (SERS)-based immunoassay platform was prepared using silver nanoparticle (AgNP)-decorated electrospun fibers as the capture substrate. We used electrospinning and silver mirror reaction to generate AgNP-decorated polycaprolactone (PCL) fiber matrix (Ag-PCL). The resultant capture substrates obtained were bi-directionally porous, free-standing, and flexible. AgNP formation on the PCL fibers was confirmed via SEM, AFM, XPS, and TGA analysis. In addition, gold nanoparticles immobilized with a Raman reporter, 4-mercaptobenzoic acid (4-MBA), were prepared as the SERS tag. This tag could significantly enhance the SERS signal via generation of additional hot spots between AgNPs on fibers and AuNPs. For a model immunoassay to detect prostate specific antigen (PSA), PSA antibodies were immobilized on both Ag-PCL and AuNP SERS tags. The large surface area of fiber substrates allowed the immobilization of large amounts of antibodies and their porous structures facilitated the assessment of the target antigen to immobilized antibodies. Binding of PSA between antibodies on AgNPs and AuNPs led to formation of a sandwich structure by the two metal nanostructures, and consequently, highly sensitive detection of PSA was possible up to a detection limit of 1 pg/mL within 1 h of reaction time. The developed SERS-based immunoassay platform produced uniform and reproducible SERS signals over the entire substrate area and from different samples.
  1. Ding SY, You EM, Tian ZQ, Moskovits M, Chem. Soc. Rev., 46, 4042 (2017)
  2. Demirel G, Usta H, Yilmaz M, Celik M, Alidagi HA, Buyukserin F, J. Mater. Chem. C, 6, 5314 (2018)
  3. Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP, Mater. Today, 15, 16 (2012)
  4. Bruzas I, Lum W, Gorunmez, Z, Sagle L, Analyst, 143, 3990 (2018)
  5. Le Ru EC, Meyer M, Etchegoin PG, J. Phys. Chem. B, 110(4), 1944 (2006)
  6. Chuong TT, Pallaoro A, Chaves CA, Li Z, Lee J, Eisenstein M, Stucky GD, Moskovits M, Soh HT, Proc. Natl. Acad. Sci. U. S. A., 114, 9056 (2017)
  7. Rong Z, Xiao R, Xing S, Xiong GL, Yu ZY, Wang LM, Jia XF, Wang KL, Cong YW, Wang SQ, Analyst, 143, 2115 (2018)
  8. Koker T, Tang N, Tian C, Zhang W, Wang XD, Martel R, Pinaud F, Nat. Commun., 9 (2018)
  9. Wang YL, Su ZH, Wang LM, Dong JB, Xue JJ, Yu J, Wang Y, Hua XD, Wang MH, Zhang CZ, Liu FQ, Anal. Chem., 89, 6392 (2017)
  10. Ji W, Zhang X, Zhao JZ, Gao Y, Song W, Ozaki Y, Analyst, 143, 1899 (2018)
  11. Wang ZY, Zong SF, Wu L, Zhu D, Cui YP, Chem. Rev., 117(12), 7910 (2017)
  12. Kaminska A, Sprynskyy M, Winkler K, Szymborski T, Anal. Bioanal. Chem., 409, 6337 (2017)
  13. Kaminska A, Witkowska E, Winkler K, Dziecielewski I, Weyher JL, Waluk J, Biosens. Bioelectron., 66, 461 (2015)
  14. Kaminska A, Winkler K, Kowalska A, Witkowska E, Szymborski T, Janeczek A, Waluk J, Sci. Rep., 7 (2017)
  15. Banaei N, Foley A, Houghton JM, Sun YB, Kim B, Nanotechnology, 28 (2017)
  16. Wang Y, Zhao P, Mao LL, Hou YJ, Li DW, RSC Adv., 8, 3143 (2018)
  17. Wang Z, Yang HQ, Wang MH, Petti L, Jiang T, Jia ZH, Xie SS, Zhou J, Colloids Surf. A: Physicochem. Eng. Asp., 546, 48 (2018)
  18. Zheng P, Li M, Jurevic R, Cushing SK, Liu YX, Wu NQ, Nanoscale, 7, 11005 (2015)
  19. Zheng P, Cushing SK, Suri S, Wu NQ, Phys. Chem. Chem. Phys., 17, 21211 (2015)
  20. Quyen TTB, Chang CC, Su WN, Uen YH, Pan CJ, Liu JY, Rick J, Lin KY, Hwang BJ, J. Mater. Chem. B, 2, 629 (2014)
  21. Jiang T, Wang XL, Zhou J, Jin H, Sens. Actuators B-Chem., 258, 105 (2018)
  22. Smolsky J, Kaur S, Hayashi C, Batra SK, Krasnoslobodtsev AV, Biosensors, 7 (2017)
  23. Xie D, Zhu WF, Cheng H, Yao ZY, Li M, Zhao YL, Phys. Chem. Chem. Phys., 20, 8881 (2018)
  24. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R, Chem. Soc. Rev., 37, 1001 (2008)
  25. Zhang LF, Gong X, Bao Y, Zhao Y, Xu M, Jiang CY, Fong H, Langmuir, 28(40), 14433 (2012)
  26. Ren SX, Dong LL, Zhanag XQ, Lei TZ, Ehrenhauser F, Song KL, Li MC, Sun XX, Wu QL, Materials, 10 (2017)
  27. Camposeo A, Spadaro D, Magri D, Moffa M, Gucciard PG, Persano L, Marago OM, Pisignano D, Anal. Bioanal. Chem., 408, 1357 (2016)
  28. Prikhozhdenko ES, Bratashov DN, Gorin DA, Yashchenok AM, Nano Res., 11, 4468 (2018)
  29. Liu ZC, Yan ZD, Jia L, Song P, Mei LY, Bai L, Liu YQ, Appl. Surf. Sci., 403, 29 (2017)
  30. Chamuah N, Bhuyan N, Das PP, Ojah N, Choudhary AJ, Medhi T, Nath P, Sens. Actuators B-Chem., 273, 710 (2018)
  31. Jalaja K, Bhuvaneswari S, Ganiga M, Divyamol R, Anup S, Cyriac J, George BK, Anal. Methods, 9, 3998 (2017)
  32. Bao Y, Lai CL, Zhu ZT, Fong H, Jiang CY, RSC Adv., 3, 8998 (2013)
  33. Chen C, Tang YG, Vlahovic B, Yan F, Nanoscale Res. Lett., 12 (2017)
  34. Zhao PX, Li N, Astruc D, Coord. Chem. Rev., 257, 638 (2013)
  35. Shu L, Zhou J, Yuan XC, Petti L, Chen JP, Jia ZH, Mormile P, Talanta, 123, 161 (2014)
  36. Han SW, Lee S, Hong J, Jang E, Lee T, Koh WG, Biosens. Bioelectron., 45, 129 (2013)
  37. Han SW, Koh WG, Anal. Chem., 88, 6247 (2016)
  38. Chegel V, Rachkov O, Lopatynskyi A, Ishihara S, Yanchuk I Nemoto Y, Hill JP, Ariga K, J. Phys. Chem. C, 116, 2683 (2012)