Journal of Industrial and Engineering Chemistry, Vol.82, 424-432, February, 2020
Monitoring the photoinduced surface catalytic coupling reaction and environmental exhaust fumes with an Ag/PDA/CuO modified 3D glass microfiber platform
E-mail:
We demonstrate an efficient plasmon catalytic activity of a newly constructed metal.molecular. semiconductor, SERS substrate Ag/PDA/CuO@GMF. The support of tubular GMF surface and strong adhesion of PDA layer provided a uniform and well-packed distribution of Ag NPs and CuO to derive an efficient surface plasmon catalytic activity of Ag/PDA/CuO@GMF for the conversion of 4-Nitrothiophenol (4-NTP) to 4,4'-Dimercaptoazobenzene (4,4'-DMAB). Significant surface-enhanced Raman scattering (SERS) signal of 4,4'-DMAB and efficient catalytic activities of Ag/PDA/CuO@GMF were related to the combined cofactors, (a) a long-range electromagnetic effect of Ag NPs and (b) a stimulated charge transfer due to the presence of CuO and Ag NPs. In addition, charge redistributions among adsorbent 4,4'- DMAB and metal segments (Ag and CuO) via PDA played an important role in obtaining enhanced surface plasmon induced catalytic activities. Moreover, we utilized the structural properties of the 3D microfiber to enhance the applicability of the substrate. It was further demonstrated that the substrate could be used to adsorb and detect the gaseous pollutants in the environment, thus providing an effective method for rapid on-site analysis.
Keywords:Silver nanoparticle;Polydopamine;Copper oxide;Photocatalytic;gaseous pollutants;Surface-enhanced Raman scattering
- Yu Z, Yu W, Xing J, Ganeev RA, Xin W, Cheng J, Guo C, ACS Photonics., 5, 1619 (2018)
- Ji W, Xue X, Ruan W, Wang C, Ji N, Chen L, Li Z, Song W, Zhao B, Lombardi JR, Chem. Commun., 47, 2426 (2011)
- Zhang X, Yu Z, Ji W, Sui H, Cong Q, Wang X, Zhao B, J. Phys. Chem. C, 119, 22439 (2015)
- Zalduendo MM, Langer J, Giner-Casares JJ, Halac EB, Soler-Illia GJAA, Liz-Marzan LM, Angelome PC, J. Phys. Chem. C, 122, 13095 (2018)
- Solis DM, Taboada JM, Obelleiro F, Liz-Marzan LM, Garcia de Abajo FJ, ACS Photonics., 4, 329 (2017)
- Xu PF, Lee JH, Ma K, Choi C, Jin S, Wang J, Cha JN, Chem. Commun., 49, 8994 (2013)
- Jia S, Wang Y, Liu X, Zhao S, Zhao W, Huang Y, Li Z, Lin Z, Nano Energy, 59, 229 (2019)
- Li L, Hutter T, Finnemore AS, Huang FM, Baumberg JJ, Elliott SR, Steiner U, Mahajan S, Nano Lett., 12, 4242 (2012)
- Rhodes C, Franzen S, Maria JP, Losego M, Leonard DN, Laughlin B, Duscher G, Weibel S, J. Appl. Phys., 100, 054905 (2006)
- Zheng X, Ren F, Zhang S, Zhang X, Wu H, Zhang X, Xing Z, Qin W, Liu Y, Jiang C, ACS Appl. Mater. Interfaces, 9, 14534 (2017)
- Balcytis A, Ryu M, Seniutinas G, Juodkazyte J, Cowie BCC, Stoddart PR, Zamengo M, Morikawa J, Juodkazis S, Nanoscale, 7, 18299 (2015)
- Fu SY, Hsu YK, Chen MH, Chuang CJ, Chen YC, Lin YG, Opt. Exp., 22, 14617 (2014)
- He X, Wang H, Li Z, Chen D, Liu J, Zhang Q, Nanoscale, 7, 8619 (2015)
- Liu L, Yang H, Ren X, Tang J, Li Y, Zhang X, Cheng Z, Nanoscale, 7, 5147 (2015)
- Hsieh S, Lin PY, Chu LY, J. Phys. Chem. C, 118, 12500 (2014)
- Liu S, Zhao X, Li Y, Chen M, Sun M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 73, 382 (2009)
- Valley N, Greeneltch N, Van Duyne RP, Schatz GC, J. Phys. Chem. Lett., 4, 2599 (2013)
- Xia L, Chen M, Zhao X, Zhang Z, Xia J, Xu H, Sun M, J. Raman Spectrosc., 45, 533 (2014)
- Li JM, Liu JY, Yang Y, Qin D, J. Am. Chem. Soc., 137(22), 7039 (2015)
- Sun M, Zhang Z, Chen L, Li Q, Sheng S, Xu H, Song P, Adv. Mater. Interfaces, 1 (2014)
- Zhang Z, Sheng S, Zheng H, Xu H, Sun M, Nanoscale, 6, 4903 (2014)
- Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ, Nano Lett., 13, 240 (2013)
- Mukherjee S, Zhou LA, Goodman AM, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas NJ, J. Am. Chem. Soc., 136(1), 64 (2014)
- Zhang Z, Chen L, Sun M, Ruan P, Zheng H, Xu H, Nanoscale, 5, 3249 (2013)
- Huang YF, Zhang M, Zhao LB, Feng JM, Wu DY, Ren B, Tian ZQ, Angew. Chem.-Int. Edit., 53, 2353 (2014)
- Huang W, Jing Q, Du Y, Zhang B, Meng X, Sun M, Schanze KS, Gao H, Xu P, J. Mater. Chem. C, 3, 5285 (2015)
- Kim K, Shin D, Kim KL, Shin KS, Phys. Chem. Chem. Phys., 14, 4095 (2012)
- Zhang Z, Fang Y, Wang W, Chen L, Sun M, Adv. Sci., 3, 150021 (2016)
- Liebig F, Sarhan RM, Sander M, Koopman W, Schuetz R, Bargheer M, Koetz J, ACS Appl. Mater. Interfaces, 9, 20247 (2017)
- Nelson DA, Schultz ZD, J. Phys. Chem. C, 122, 8581 (2018)
- Xu R, Lu P, Wu B, Wang X, Pang X, Du B, Fan D, Wei Q, Sens. Actuators B-Chem., 274, 349 (2018)
- Xiong W, Zhao Q, Li X, Wang L, Particle Particle Syst. Charact., 33, 602 (2016)
- Fan M, Andrade GFS, Brolo AG, Anal. Chim. Acta, 693, 7 (2011)
- Zhang Q, Lee YH, Phang IY, Lee CK, Ling XY, Small, 10, 2703 (2014)
- Jeffers RB, Cooper JB, Spectrosc. Lett., 43, 220 (2010)
- Weatherston JD, Seguban RKO, Hunt D, Wu HJ, ACS Sensors, 3, 852 (2018)
- Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ, ACS Nano, 8, 12175 (2014)
- Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H, Nat. Mater., 9(8), 676 (2010)
- Luo H, Gu C, Zheng W, Dai F, Wang X, Zheng Z, RSC Adv., 5, 13470 (2015)
- Pop-Georgievski O, Neykova N, Proks V, Houdkova J, Ukraintsev E, Zemek J, Kromka A, Rypacek F, Thin Solid Films, 543, 180 (2013)
- Zangmeister RA, Morris TA, Tarlov MJ, Langmuir, 29(27), 8619 (2013)
- Liu YL, Ai KL, Lu LH, Chem. Rev., 114(9), 5057 (2014)
- Niu H, Wang S, Zeng T, Wang Y, Zhang X, Meng Z, Cai Y, J. Mater. Chem., 22, 15644 (2012)
- Yang J, Stuart MAC, Kamperman M, Chem. Soc. Rev., 43, 8271 (2014)
- Son HY, Ryu JH, Lee H, Nam YS, Macromol. Mater. Eng., 298, 547 (2013)
- Zhao LB, Huang YF, Liu XM, Anema JR, Wu DY, Ren B, Tian ZQ, Phys. Chem. Chem. Phys., 14, 12919 (2012)
- Li W, Cui X, Junge K, Surkus AE, Kreyenschulte C, Bartling S, Beller M, ACS Catal., 9, 4302 (2019)
- Lee SW, Hong JW, Lee H, Wi DH, Kim SM, Han SW, Park JY, Nanoscale, 10, 10835 (2018)
- Shen Z, Cao J, Liu S, Zhu C, Wang X, Zhang T, Xu H, Hu T, J. Air Waste Manage. Assoc., 61, 1150 (2011)