Polymer(Korea), Vol.44, No.1, 21-29, January, 2020
상호침투 히알루론산 네트워크 구조를 기반으로 한 항산화 기능성 수화젤 콘택트렌즈 제조
Preparation of Antioxidant Hydrogel Contact Lenses Based on Interpenetrating Hyaluronic Acid Network
E-mail:
초록
본 연구에서는 도파민을 표면에 부착한 항산화 콘택트렌즈를 제조하였다. 2-Hydroxyethyl methacrylate(HEMA), ethylene glycol dimethacrylate(EGDMA)를 공중합하여 기본 pHEMA 렌즈를 제조하였다. 제조된 렌즈 표면에 히알루론산 고분자를 상호침투시킨 후, 히알루론산의 카복실산 부분에 도파민으로 공유 결합시켜 항산화 콘택트렌즈를 제조하였다. 본 항산화 렌즈는 높은 광학 투명도를 보였으며, pHEMA 렌즈 대비 높은 습윤성 및 표면 친수성을 나타내었다. 라디칼 소거능 시험을 이용하여 항산화 기능성을 확인한 결과, 항산화 렌즈는 도파민을 부착하지 않은 pHEMA 렌즈에 비해 높은 소거율을 나타냈다. 본 결과는 대표적 항산화 물질인 아스코빅산의 항산화 기능대비 98% 이상에 해당하는 수치이다
In this work, we prepared antioxidant contact lenses functionalized with polyphenolic dopamine on the lens surface. Before introducing the antioxidant dopamine, poly(2-hydroxyethyl methacrylate) (pHEMA) lens was synthesized by copolymerizing 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA). The pHEMA lens surface formed an interpenetrating hyaluronic acid network structure, and the carboxylic acid of hyaluronic acid polymer was coupled with dopamine, finally yielding antioxidant contact lens. The prepared antioxidant lens showed a high optical transparency, and better water content and surface hydrophilicity than those of pHEMA lens. The antioxidant activity of the antioxidant contact lens was about 80% higher than that of the pHEMA lens (12.6%), as characterized by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assays. These antioxidant results are equivalent to more than 98% of the ascorbic acid antioxidant activity.
- Hu X, Hao L, Wang H, Yang X, Zhang G, Wang G, Zhang X, Int. J. Polym. Sci., 2011, 9 (2011)
- Kim JH, Kim MJ, Lee MS, Kim KJ, Ji SY, Kim YT, Park JH, Na KM, Bae KH, Kim HK, Bien F, Lee CY, Park JU, Nat. Commun., 8, 14997 (2017)
- Majima HJ, Watanabe K, Ueda T, Indo HP, Suenaga S, Hisamitsu T, Ozawa T, Yasuhara H, Koide R, Nakanishi-Ueda T, Free Radical Res., 47, 774 (2013)
- Nita M, Grzybowski A, Oxid. Med. Cell. Longev., 2016, 23 (2016)
- Brand-Williams W, Cuvelier ME, Berset C, LWT-Food Sci. Technol., 28, 25 (1995)
- Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T, J. Agric. Food Chem., 50, 5468 (2002)
- Schindler S, Bechtold T, J. Electroanal. Chem., 836, 94 (2019)
- Yen GC, Hsieh CL, Biosci. Biotech. Biochem., 61, 1646 (1997)
- Iida M, Miyazaki I, Tanaka KI, Kabuto H, Iwata-Ichikawa E, Ogawa N, Brain Res., 838, 51 (1999)
- Leach JB, Bivens KA, Patrick CW, Schmidt CE, Biotechnol. Bioeng., 82(5), 578 (2003)
- Yun YH, Goetz DJ, Yellen P, Chen W, Biomaterials, 25, 147 (2004)
- Deng X, Korogiannaki M, Rastegari B, Zhang J, Chen M, Fu Q, Sheardown H, Filipe CDM, Hoare T, ACS Appl. Mater. Interfaces, 8, 22064 (2016)
- Wang JJ, Wei J, Appl. Surf. Sci., 382, 202 (2016)
- Zhou C, Truong VX, Qu Y, Lithgow T, Fu G, Forsythe JS, J. Polym. Sci. A: Polym. Chem., 54, 656 (2015)
- Yeo JK, Sperling LH, Thomas DA, Polym. Eng. Sci., 21, 696 (1981)
- Hillerstrom A, Kronberg B, J. Appl. Polym. Sci., 110(5), 3059 (2008)
- Polakova L, Raus V, Kostka L, Braunova A, Pilar J, Lobaz V, Panek J, Sedlakova Z, Biomacromolecules, 16(9), 2726 (2015)
- Papariello GJ, Janish MAM, Anal. Chem., 37, 899 (1965)
- Soares AA, de Souza CGM, Daniel FM, Ferrari GP, da Costa SMG, Peralta RM, Food Chem., 112, 775 (2009)
- Kim BR, Kang BM, Vales TP, Yang SK, Lee JM, Kim HJ, Macromol. Res., 26(1), 35 (2018)
- Arnao MB, Cano a, Acosta M, Food Chem., 73, 239 (2001)
- Kim HJ, Ryu GC, Jeong KS, Jun J, Macromol. Res., 23(1), 74 (2015)
- Farris S, Introzzi L, Biagioni P, Holz T, Schiraldi A, Piergiovanni L, Langmuir, 27(12), 7563 (2011)
- Hawkins CL, Davies MJ, Free Radic. Biol. Med., 21, 275 (1996)