화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.1, 99-108, January, 2020
셀룰로오스 나노결정 표면에 Thiol기가 도입된 충전제를 이용한 Thiol-ene UV 광중합 나노복합체 제조 및 물성에 대한 연구
Preparation and Properties of Thiol-ene UV-Photopolymerized Nanocomposites Using Cellulose Nanocrystals (CNCs) with Thiol Groups as Fillers
E-mail:
초록
본 연구에서는 cellulose nanocrystal(CNC)를 개질하기 위해 (3-ercaptopropyl)trimethoxysilane(MPTS)를 사용하여 실란화 반응을 통해 CNC 표면에 티올기(-SH)를 도입하였다. 개질된 CNC가 나노복합체에 미치는 영향을 연구하기 위하여, 순수 CNC와 MPTS로 개질된 CNC(CNC-MPTS)를 충전제로 사용하여 acrylate계 수지와 thiol-ene 광중합법으로 나노복합체를 제조하였다. 순수 CNC 및 CNC-MPTS를 5 wt% 사용한 나노복합체의 Tg와 인장강도를 순수 수지 중합체와 비교하면, Tg는 7.4 및 10.4 ℃ 증가하고, 탄성률은 1.33 및 2.06배 증가하는 것을 동적기계분석기(DMA) 및 만능재료시험기(UTM) 측정으로 각각 확인하였다
In this study, thiol groups were introduced on the surface of cellulose nanocrystal (CNC) by silanization using (3-mercaptopropyl)trimethoxysilane (MPTS). Nanocomposites comprising of acrylate resin and fillers, such as pristine CNC and MPTS-modified CNC (CNC-MPTS), were prepared to study the effect of surface-modified CNC on various thermomechanical properties. Comparing the Tg and modulus of the nanocomposites with the 5 wt% pristine CNC and the CNC-MPTS fillers to UV cured resin without filler, this study confirmed an increase in Tg by 7.4 and 10.4 ℃, and improvement in modulus by 1.33 and 2.06 times by dynamic mechanical analyzer (DMA) and universal testing machine (UTM), respectively
  1. Lagerwall JP, Schutz C, Salajkova M, Noh JH, Park JH, Scalia G, Bergstrom L, NPG Asia Mater., 6, e80 (2014)
  2. Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G, Carbon Resour. Convers., 1, 32 (2018)
  3. Salas C, Nypelo T, R-Avreu C, Carrillo c, Rojas O, Curr. Opin. Colloid Interface Sci., 19, 383 (2014)
  4. Kang HM, Shin YH, Kim DS, Polym. Korea, 42(4), 649 (2018)
  5. Taipina MDO , Ferrarezi MMF, Yoshida IVP, Goncalves MDC, Cellulose, 20, 217 (2013)
  6. Zhang Z, Wu Q, Song K, Ren S, Ren S, Lei T, Zhang Q, ACS Sustain. Chem. Eng., 3, 574 (2015)
  7. Lee HJ, Kim SK, Kang YH, Kim WS, J. Korean Soc. Adv. Comp. Struc., 8, 49 (2017)
  8. Shin JH, NICE, 34, 500 (2016)
  9. Song SK, Kim JH, Hwang KS, Ha K, Polym. Korea, 49, 181 (2010)
  10. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C, Composites Part A, 41, 806 (2010)
  11. Lee S, Ha K, Polym. Korea, 37(6), 777 (2013)
  12. Kim SH, Chang HS, Park S, Song K, Polym. Korea, 34(5), 469 (2010)
  13. Bae JW, Jung JH, Wang HS, Kim SH, Kim IJ, Kim IJ, Song K, Polym. Korea, 41(2), 361 (2017)
  14. Kang H, Wang L, Lee MH, J. Korean Soc. Imaging Sci. Technol., 13, 215 (2007)
  15. Hoyle CE, Bowman CN, Angew. Chem.-Int. Edit., 49, 1540 (2010)
  16. Halvorson RH, Erickson RL, Davidson CL, Dent. Mater., 19, 327 (2003)
  17. Asempour F, Emadzadeh D, Matsuura T, Kruczek B, Desalination, 439, 179 (2018)
  18. Huang JL, Li CJ, Gray DG, RSC Adv., 4, 6965 (2014)
  19. Janes DW, Shanmuganathan K, Chou DY, Ellison CJ, ACS Macro Lett., 1, 1138 (2012)
  20. Lee JH, Lee YN, Park SS, Ha KR, Polym. Korea, 43(4), 612 (2019)
  21. Salon MCB, Gerbaud G, Abdelmolleh M, Bruzzese C, Boufi S, Belgacem MN, Magn. Reson. Chem., 45, 473 (2007)
  22. Seo G, Kim DI, Kim SJ, Ryu CS, Yang JK, Kang YG, Elastom. Composites, 52, 114 (2017)
  23. Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)