- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.28, No.1, 1-4, January, 2020
Structure and Properties of Aromatic Polyimide Fibers Fabricated by a Novel “Reaction-Spinning” Method
E-mail:,
In this work, two sets of high performance polyimide (PI) fibers fabricated by a more environmentally-friendly and highly efficient “reaction-spinning” method were firstly reported. The relationship between the spinning rate, chemical structure and the imidization degree of the PI precursor fibers were investigated, and the results indicated a moderate low spinning speed and relatively flexible molecular chains are both favorable for the partial imidization reaction in the spinning process. 2D WAXD results demonstrate that the rigid PDA-based PI fibers possess a higher alignment of polymer chains along the fiber axis during the spinning compared to the flexible ODA-based PIs, resulting in enhanced mechanical properties, with the tensile strength of 1.2-2.8 GPa and modulus of 53.6-111.2 GPa, respectively. Meanwhile, ODA sets of PI fibers exhibit a higher loop strength and knot strength than the commercial Aramid and PBO fibers. The process used in this study has a significant potential for realizing industrial level production of high strength and high modulus PI fibers.
Keywords:reaction-spinning;polyimide fiber;partial imidization;chains orientation;high-strength and high-modulus
- Chae HG, Kumar S, J. Appl. Polym. Sci., 100(1), 791 (2006)
- Zhang M, Niu H, Wu D, Macromol. Rapid Commun., 39, 180014 (2018)
- Zhang QH, Dong J, Wu DZ, in Advanced Polyimide Materials, Elsevier, pp.67-92 2018.
- Zhao F, Zhao X, Peng B, Gan F, Yao M, Tan W, Dong J, Zhang Q, Chinese Chem. Lett., 29, 1692 (2018)
- Dong J, Yin C, Luo W, Zhang Q, J. Mater. Sci., 48, 7602 (2013)
- Kaneda T, Katsura T, Nakagawa K, Makino H, Horio M, J. Appl. Polym. Sci., 32, 3133 (1986)
- Eashoo M, Wu Z, Zhang A, Shen D, Tse C, Harris FW, Cheng SZD, Gardner KH, Hsiao BS, Macromol. Chem. Phys., 195, 2207 (1994)
- Gan F, Dong J, Zhang DB, Tan WJ, Zhao X, Zhang QH, J. Mater. Sci., 53(7), 5477 (2018)
- Dai XM, Bao F, Jiao L, Yao HB, Ji XL, Qiu XP, Men YF, Polymer, 150, 254 (2018)
- Niu H, Qi S, Han E, Tian G, Wang X, Wu D, Mater. Lett., 89, 63 (2012)
- Yi X, Gao Y, Zhang M, Zhang C, Wang Q, Liu G, Dong X, Wu D, Men Y, Wang D, Eur Polym. J, 91, 232 (2017)
- Tian Q, Xu Z, Liu Y, Fang B, Peng L, Xi J, Li Z, Gao C, Nanoscale, 9, 12335 (2017)
- Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ, Nat. Commun., 8, 1387 (2017)
- Hooshmand S, Aitomaki Y, Norberg N, Mathew AP, Oksman K, ACS Appl. Mater. Inter., 7, 13022 (2015)
- Lian M, Lu XM, Lu QH, Macromolecules, 51(24), 10127 (2018)
- Dong J, Xu Y, Xia Q, Yin C, Zhang Q, High Perform. Polym., 26, 517 (2014)
- Xu Y, Wang SH, Li ZT, Xu Q, Zhang QH, J. Mater. Sci., 48(22), 7863 (2013)
- Becker KH, Schmidt HW, Macromolecules, 25, 6784 (1992)
- Seo Y, Lee SM, Kim DY, Kim KU, Macromolecules, 30(13), 3747 (1997)
- Mochizuki A, Teranishi T, Ueda M, Polym. J., 26, 315 (1994)
- Wang HN, Yang MX, Luo LB, Huang JY, Li K, Wang X, Feng Y, Liu XY, Chinese J. Polym. Sci., 33, 621 (2015)
- Chung IS, Park CE, Ree M, Kim SY, Chem. Mater., 13, 2801 (2001)
- Lee WJ, Clancy AJ, Kontturi E, Bismarck A, Shaffer MSP, ACS Appl. Mater. Inter., 8, 31500 (2016)
- Clarkson CM, El Awad Azrak SM, Chowdhury R, Shuvo SN, Snyder J, Schueneman G, Ortalan V, Youngblood JP, ACS Appl. Polym. Mater., 1, 160 (2019)
- Yin CQ, Dong J, Tan WJ, Lin JY, Chen DJ, Zhang QH, Polymer, 75, 178 (2015)
- Niu HQ, Huang MJ, Qi SL, Han EL, Tian GF, Wang XD, Wu DZ, Polymer, 54(6), 1700 (2013)
- Luo LB, Pang YW, Jiang X, Zhang P, Chen Y, Peng CR, Liu XY, J. Poly. Res., 19, 9783 (2012)