화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.1, 1-4, January, 2020
Structure and Properties of Aromatic Polyimide Fibers Fabricated by a Novel “Reaction-Spinning” Method
E-mail:,
In this work, two sets of high performance polyimide (PI) fibers fabricated by a more environmentally-friendly and highly efficient “reaction-spinning” method were firstly reported. The relationship between the spinning rate, chemical structure and the imidization degree of the PI precursor fibers were investigated, and the results indicated a moderate low spinning speed and relatively flexible molecular chains are both favorable for the partial imidization reaction in the spinning process. 2D WAXD results demonstrate that the rigid PDA-based PI fibers possess a higher alignment of polymer chains along the fiber axis during the spinning compared to the flexible ODA-based PIs, resulting in enhanced mechanical properties, with the tensile strength of 1.2-2.8 GPa and modulus of 53.6-111.2 GPa, respectively. Meanwhile, ODA sets of PI fibers exhibit a higher loop strength and knot strength than the commercial Aramid and PBO fibers. The process used in this study has a significant potential for realizing industrial level production of high strength and high modulus PI fibers.
  1. Chae HG, Kumar S, J. Appl. Polym. Sci., 100(1), 791 (2006)
  2. Zhang M, Niu H, Wu D, Macromol. Rapid Commun., 39, 180014 (2018)
  3. Zhang QH, Dong J, Wu DZ, in Advanced Polyimide Materials, Elsevier, pp.67-92 2018.
  4. Zhao F, Zhao X, Peng B, Gan F, Yao M, Tan W, Dong J, Zhang Q, Chinese Chem. Lett., 29, 1692 (2018)
  5. Dong J, Yin C, Luo W, Zhang Q, J. Mater. Sci., 48, 7602 (2013)
  6. Kaneda T, Katsura T, Nakagawa K, Makino H, Horio M, J. Appl. Polym. Sci., 32, 3133 (1986)
  7. Eashoo M, Wu Z, Zhang A, Shen D, Tse C, Harris FW, Cheng SZD, Gardner KH, Hsiao BS, Macromol. Chem. Phys., 195, 2207 (1994)
  8. Gan F, Dong J, Zhang DB, Tan WJ, Zhao X, Zhang QH, J. Mater. Sci., 53(7), 5477 (2018)
  9. Dai XM, Bao F, Jiao L, Yao HB, Ji XL, Qiu XP, Men YF, Polymer, 150, 254 (2018)
  10. Niu H, Qi S, Han E, Tian G, Wang X, Wu D, Mater. Lett., 89, 63 (2012)
  11. Yi X, Gao Y, Zhang M, Zhang C, Wang Q, Liu G, Dong X, Wu D, Men Y, Wang D, Eur Polym. J, 91, 232 (2017)
  12. Tian Q, Xu Z, Liu Y, Fang B, Peng L, Xi J, Li Z, Gao C, Nanoscale, 9, 12335 (2017)
  13. Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ, Nat. Commun., 8, 1387 (2017)
  14. Hooshmand S, Aitomaki Y, Norberg N, Mathew AP, Oksman K, ACS Appl. Mater. Inter., 7, 13022 (2015)
  15. Lian M, Lu XM, Lu QH, Macromolecules, 51(24), 10127 (2018)
  16. Dong J, Xu Y, Xia Q, Yin C, Zhang Q, High Perform. Polym., 26, 517 (2014)
  17. Xu Y, Wang SH, Li ZT, Xu Q, Zhang QH, J. Mater. Sci., 48(22), 7863 (2013)
  18. Becker KH, Schmidt HW, Macromolecules, 25, 6784 (1992)
  19. Seo Y, Lee SM, Kim DY, Kim KU, Macromolecules, 30(13), 3747 (1997)
  20. Mochizuki A, Teranishi T, Ueda M, Polym. J., 26, 315 (1994)
  21. Wang HN, Yang MX, Luo LB, Huang JY, Li K, Wang X, Feng Y, Liu XY, Chinese J. Polym. Sci., 33, 621 (2015)
  22. Chung IS, Park CE, Ree M, Kim SY, Chem. Mater., 13, 2801 (2001)
  23. Lee WJ, Clancy AJ, Kontturi E, Bismarck A, Shaffer MSP, ACS Appl. Mater. Inter., 8, 31500 (2016)
  24. Clarkson CM, El Awad Azrak SM, Chowdhury R, Shuvo SN, Snyder J, Schueneman G, Ortalan V, Youngblood JP, ACS Appl. Polym. Mater., 1, 160 (2019)
  25. Yin CQ, Dong J, Tan WJ, Lin JY, Chen DJ, Zhang QH, Polymer, 75, 178 (2015)
  26. Niu HQ, Huang MJ, Qi SL, Han EL, Tian GF, Wang XD, Wu DZ, Polymer, 54(6), 1700 (2013)
  27. Luo LB, Pang YW, Jiang X, Zhang P, Chen Y, Peng CR, Liu XY, J. Poly. Res., 19, 9783 (2012)