Korean Chemical Engineering Research, Vol.58, No.1, 36-43, February, 2020
생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향
Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents
E-mail:
초록
생분해성 금속인 마그네슘 합금 와이어를 이용하여 담관용 스텐트를 제작하였다. 생체 내에서 마그네슘 합금의 문제점인 빠른 분해 및 부식을 제어하기 위하여 마그네슘 합금 와이어를 생분해성 고분자인 polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly(L-lactic acid) (PLLA), poly(D,L-lactide-co-glycolide) (PLGA) 등으로 코팅하였다. 표면분해가 이루어지는 고분자인 PPC의 경우는 전분해 거동을 보이는 다른 고분자들(PCL, PLLA, PLGA)에 비해 크랙이나 박리가 없어 가장 효율적으로 마그네슘 와이어의 분해 속도를 지연시켰다. 또한 생분해성 고분자 코팅이 마그네슘 합금 스텐트의 기계적 물성인 축 방향 힘에 미치는 영향에 대하여 조사하였다. 대부분의 생분해성 고분자(PCL, PLLA, PLGA)로 코팅된 스텐트는 코팅되지 않은 스텐트에 비해 축 방향의 힘이 증가하여 스텐트의 유연성을 감소시켰으나, PPC로 코팅된 스텐트는 코팅되지 않은 스텐트와 비슷한 축 방향의 힘을 나타내 스텐트의 유연성을 감소시키지 않았다. 이상의 결과로부터 PPC가 가장 효율적인 생분해성 고분자로 판단된다.
A biliant stent was fabricated using a magnesium alloy wire, a biodegradable metal. In order to control the fast decomposition and corrosion of magnesium alloys in vivo, magnesium alloy wires were coated with biodegradable polymers such as polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly (L-lactic acid) (PLLA), and poly (D, L-lactide-co-glycolide) (PLGA). In the case of PPC, which is a surface erosion polymer, there is no crack or peeling compared to other polymers (PCL, PLLA, and PLGA) that exhibit bulk erosion behavior. Also, the effect of biodegradable polymer coating on the axial force, which is the mechanical property of magnesium alloy stents, was investigated. Stents coated with most biodegradable polymers (PCL, PLLA, PLGA) increased axial forces compared to the uncoated stent, reducing the flexibility of the stent. However, the stent coated with PPC showed the axial force similar to uncoated stent, which did not reduce the flexibility. From the above results, PPC is considered to be the most efficient biodegradable polymer.
Keywords:Magnesium Alloy;Biliary Stents;Biodegradable Polymers;Coating;poly(propylene carbonate);Mechanical Property;Radial Force;Axial Force
- Jeong S, Lee DH, Korean J. Gastrointest. Endosc., 40, 348 (2010)
- Choi C, Nah JW, Park JK, KIC News, 18(4), 10 (2015)
- Cho YK, Park S, Gwon DI, Kang SK, Biomaterials Research, 16(3), 116 (2012)
- Kim HW, Kang DH, Korean J. Gastrointest. Endosc., 39(1), 1 (2009)
- Demir AG, Previtali B, ge Q, vedani M, Wu W, Migliavacca F, Petrini L, Biffi CA, Bestetti M, International Journal of Computer Integrated Manufacturing, 936-945(2013).
- Hanzi AC, Gerber I, Schinhammer M, Loffler JF, Uggowitzer PJ, Acta Biomaterialia, 6(5), 1824 (2010)
- Wong HM, Yeung KWK, Lam KO, Tan V, Chu PK, Luk KDK, Cheung KMC, Biomaterials, 31(8), 2084 (2010)
- Rieu R, Barragan P, Masson C, Fuseri J, Garitey V, Silvestri M, Roquebert P, Sainsous J, Catheterization and Cardiovascular Interventions, 46, 380-391(1999).
- Hirdes MMC, Vleggaar FP, Beule MD, Siersema PD, Endoscopy, 45, 997 (2013)
- Wang J, He Y, Maitz MF, Collins B, Xiong K, Guo L, Yun Y, Wan G, Huang N, Acta Biomaterialia, 9, 8678 (2013)
- The Korean Society for Biomaterials, Biomaterials, 2nd ed., Free-Academy, Paju-Si, Korea(2016).
- Yang L, Zhang E, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 1691 (2009)
- Kwon JH, Seong CK, Shin TB, Jung GS, Park BH, Kim YJ, J. Korean Radiol. Soc., 47, 35 (2002)