Korean Chemical Engineering Research, Vol.58, No.1, 52-58, February, 2020
LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과
Effect of MgF2 Surface Modification for LiNi0.8Co0.15Al0.05O2 Cathode Material on Improving Electrochemical Characteristics
E-mail:
초록
본 연구에서는 MgF2를 이용하여 LiNi0.8Co0.15Al0.05O2 양극활물질의 표면을 코팅하여 전기화학적 특성과 열적 안정성을 평가하였다. 코팅된 MgF2의 비율은 0.5, 1, 3 wt%로 조절하였다. 전기화학적 특성은 CV, 충·방전 프로파일, 출력특성, 수명특성을 분석하였고, 열적 안정성은 DSC 분석을 통하여 이루어졌다. 전기화학적 특성 분석 결과 0.1C에서 초기 방전 용량은 MgF2 코팅이 되었을 때 감소하였지만, 2C까지 출력을 향상 시켰을 때는 약간 향상된 방전 용량을 얻을 수 있었고, 수명특성 또한 향상되었다. 또한 DSC 분석 결과 코팅이 되었을 때 발열 온도가 증가하였고, 발열 피크의 세기 또한 감소하였다.
Electrochemical characterization and thermal stability were investigated for MgF2 coated LiNi0.8Co0.15Al0.05O2 cathode. The ratio of MgF2 was controlled by 0.5, 1, 3 wt%. Cyclic voltammetry, charge-discharge profiles, rate capability, cycle life were measured for electrochemical properties. DSC analysis was measured for thermal stability. The first discharge capacities of MgF2 coated LiNi0.8Co0.15Al0.05O2 were decreased at 0.1C-rate compared to pristine LiNi0.8Co0.15Al0.05O2. But the rate capability and cycle life of MgF2 coated LiNi0.8Co0.15Al0.05O2 were improved at 2C-rate. In DSC analysis result, the exothermic temperature of MgF2 coated LiNi0.8Co0.15Al0.05O2 was increased and peak height was decreased.
Keywords:Lithium secondary battery;Cathode material;LiNi0.8Co0.15Al0.05O2;MgF2 coating;Thermal stability
- Zhang QQ, Liu K, Ding F, Li W, Liu XJ, Zhang JL, Electrochim. Acta, 298, 818 (2019)
- Liang HM, Wang ZX, Guo HJ, Wang JX, Leng J, Appl. Surf. Sci., 423, 1045 (2017)
- Park HR, J. Ind. Eng. Chem., 16(5), 698 (2010)
- Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M, Korean J. Chem. Eng., 19(5), 791 (2002)
- Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ, Electrocim. Acta, 51, 3872 (2006)
- Hu GR, Liu WM, Peng ZD, Du K, Cao YB, J. Power Sources, 198, 258 (2012)
- Zhong SW, Zhao YJ, Lian F, Li Y, Hu Y, Li PZ, Mei J, Liu QG, Trans. Nonferrous Met. Soc. China, 16, 137 (2006)
- Xin-Rong D, Guo-Rong H, Ke D, Zhong-Dong P, Xu-Guang G, Ya-Nan Y, Mater. Chem. Phys., 109(2-3), 469 (2008)
- Wu SH, Yang CW, J. Power Sources, 146(1-2), 270 (2005)
- Zhang LQ, Noguchi H, Li DC, Muta T, Wang XQ, Yoshio M, Taniguchi I, J. Power Sources, 185(1), 534 (2008)
- Kim HU, Song JH, Mumm DR, Song MY, Ceram. Int., 37, 779 (2011)
- Song MY, Kwon IH, Shim SB, Song JH, Ceram. Int., 36, 1225 (2010)
- Cui P, Jia ZJ, Li LY, He T, J. Phys. Chem. Solids, 72, 899 (2011)
- Muto S, Tatsumi K, Kojima Y, Oka H, Kondo H, Horibuchi K, Ukyo Y, J. Power Sources, 205, 449 (2012)
- Zhang LQ, Noguchi H, Yoshio M, J. Power Sources, 110(1), 57 (2002)
- Cho Y, Cho J, J. Electrochem. Soc., 157(6), A625 (2010)
- Chung YM, Ryu KS, Bull. Korean Chem. Soc., 30(8), 1733 (2009)
- Chung YM, Ryu SH, Ju JH, Bak YR, Hwang MJ, Kim KW, Cho KK, Ryu KS, Bull. Korean Chem. Soc., 31(8), 2304 (2010)
- Ryu JH, Kim SB, Park YJ, Bull. Korean Chem. Soc., 30(3), 657 (2009)
- Park BC, Kim HB, Bang HJ, Prakash J, Sun YK, Ind. Eng. Chem. Res., 47(11), 3876 (2008)
- Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R, J. Power Sources, 188(2), 564 (2009)
- Wang YP, Wang XY, Yang S, Shu HB, Wei Q, Wu Q, Bai Y, Hu B, J. Solid State Electr., 16, 2913 (2012)
- Wang FY, Zhu YF, Jiang Y, Zhang EP, J. Sol-Gel Sci. Technol., 58, 587 (2011)
- Fujihara S, Tada M, Kimura T, Thin Solid Films, 304(1-2), 252 (1997)
- Majumder SB, Nieto S, Katiyar RS, J. Power Sources, 154(1), 262 (2006)