Biochemical and Biophysical Research Communications, Vol.520, No.1, 47-53, 2019
Prevention of post-ischemic seizure by rapamycin is associated with deactivation of mTOR and ERK1/2 pathways in hyperglycemic rats
Pre-ischemic hyperglycemia increases the occurrence of post-ischemic seizures both in experimental and clinical settings. The underlying mechanisms are not fully delineated; however, activation of mammalian target of rapamycin (mTOR) has been shown to be engaged in the pathogenesis of epilepsy, in which seizures are a regular occurrence. Therefore, we wanted to explore specifically the capacity of an mTOR inhibitor, rapamycin, in preventing post-ischemic seizures in hyperglycemic rats and to explore the underlying molecular mechanisms. The results showed that none of the rats in the sham control, EG ischemic, or within 3 h of I/R in hyperglycemic ischemic groups experienced seizures. Generalized tonicclonic seizures were observed in all 8/8 of hyperglycemic ischemic rats at 16 h of I/R. Treatment with rapamycin successfully blocked post-ischemic seizures in 7/8 hyperglycemic ischemic animals. Rapamycin also lessened the neuronal death extraordinarily in hyperglycemic ischemic animals as revealed by histopathological studies. Protein analysis revealed that transient ischemia resulted in increases in p-mTOR and p-S6, especially in the hippocampi of the hyperglycemic ischemic rats. Rapamycin treatment completely blocked mTOR activation. Furthermore, hyperglycemic ischemia induced a much prominent rise of p-ERK1/2 both in the cortex and the hippocampi compared with EG counterparts; whereas rapamycin suppressed it. We conclude that the development of post-ischemic seizures in the hyperglycemic animals may be associated with activations of mTOR and ERK1/2 pathways and that rapamycin treatment inhibited the post-ischemic seizures effectively by suppressing the mTOR and ERK1/2 signaling. (C) 2019 Elsevier Inc. All rights reserved.
Keywords:Hyperglycemia;Cerebral ischemia;Post-ischemic seizures;Anti-seizure;mTOR pathway;Rapamycin;ERK1/2