Biochemical and Biophysical Research Communications, Vol.517, No.4, 755-761, 2019
Saccharomyces cerevisiae Ras2 restores filamentation but cannot activate the first step of GPI anchor biosynthesis in Candida albicans
Ras proteins are highly conserved small GTPases in eukaryotes. GTP-bound Ras binds to effectors to trigger signaling cascades. In order to understand how extensive is the functional homology between the highly homologous proteins, S. cerevisiae Ras2 and C. albicans Rasl, we examined whether ScRas2 could functionally complement CaRas1 in activating hyphal morphogenesis as well as GPI anchor biosynthesis. We show that ScRas2 functionally complements CaRas1 in rescuing growth as well as activating hyphal growth, a process that involves plasma membrane localized Ras activating cAMP/PIGS signaling via Cyr1. However, ScRas2 is unable to activate the GPI-N-acetylglucosaminyl transferase (GPI-GnT) which catalyzes the first step of GPI biosynthesis. That CaRas1 alone activates GPI-GnT and not ScRas2 suggests that this process is cAMP independent. Interestingly, CaRas1 transcriptionally activates CaGPI2, encoding a GPI-GnT subunit that has been shown to interact with CaRas1 physically. In turn, CaGPI2 downregulates CaGPI19, encoding another GPI-GnT subunit. This has direct consequences for expression of CaERG11, encoding the target of azole antifungals. This effect too is specific to CaRas1 and ScRas2 is unable to replicate it. (C) 2019 Elsevier Inc. All rights reserved.
Keywords:Functional complementation;S. cerevisiae Ras2;C. albicans Ras1;GPI-N-Acetylglucosaminyl transferase;Hyphal growth;ERG11