Biochemical and Biophysical Research Communications, Vol.517, No.3, 532-537, 2019
Effects of miR-150 on neuropathic pain process via targeting AKT3
MicroRNAs (miRNA) are reported to be a vital regulator of neuropathic pain. Even so, the molecular mechanisms of miRNA function on neuropathic pain development are known little. Our research was designed to investigate the role of miRNA in neuropathic pain development in rat modle set up by chronic sciatic nerve injury (CCI). Increasing miR-150 expression could significantly alleviate neuropathic pain in CCI rats. For farther researching the regulation mechanism of miR-150 on neuropathic pain, we screened AKT3 as a possible target of miR-150 by bioinformatic mechods and predicted a possible target of miR-150 in 3'-untranslated region (UTR) of AKT3 who serves as an oncogene. In rat model, the expression both of AKT3 mRNA and protein were significantly upregulated. The overexpressed miR-150 importantly repressed the level of AKT3 and simultaneously alleviate mechanical and thermal hyperalgesia in rat model. These suppressant impacts of miR-150 on neuropathic pain process can be reversed by the overexpression of AKT3. Considering all above results, our research declared that miR-150 can restrain neuropathic pain process though targeting AKT3 in vivo, suggesting that miR-150 could be the therapeutic target for neuropathic pain therapy by regulating AKT3. (C) 2019 Elsevier Inc. All rights reserved.