Catalysis Today, Vol.339, 328-336, 2020
Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles
In this work, a porous TiO2 photocatalyst derived from metal-organic framework MIL-125 was synthesized and tested for photocatalytic CO2 reduction with water. To improve the photocatalytic performance, innovative materials modifications were employed by decorating TiO2 with atomic layer deposited (ALD) MgO overcoating and photodeposited silver (Ag) nanoparticles at different orders: MgO deposition followed by Ag (i.e. Ag/MgO/TiO2), or Ag deposition followed by MgO (i.e. MgO/Ag/TiO2). The addition of Ag promoted transfer of photoinduced electrons, while the coating of an ultrathin MgO layer inhibited surface charge recombination and enhanced CO2 adsorption. The combination of MgO and Ag resulted in synergistic promotion on CO2 photoreduction greater than the sum of individual promotional effects. The Ag/MgO/TiO2 catalyst with 7 ALD-layers of MgO and 5% Ag was 14 times more active than the pristine TiO2 in terms of CO and CH4 production. In addition, the sequence of MgO/Ag decoration influenced the catalytic activity. The Ag/MgO/TiO2 catalysts were in general more active than the MgO/Ag/TiO2 counterparts, likely due to the different electron mobility and Ag nanoparticle distribution on the surface. This work for the first time reports the novel materials structure of ALD coated MgO and photodeposited Ag nanoparticles on TiO2, and it reveals the importance of optimizing materials morphology and structure to promote the catalytic activity.
Keywords:CO2 photoreduction;Atomic layer deposition;Magnesium oxide;Silver nanoparticles;Porous TiO2