화학공학소재연구정보센터
Combustion and Flame, Vol.211, 112-123, 2020
Investigation of the measurement characteristics of a multiple-ion-probe method for a propagating methane-oxygen-nitrogen flame
The multiple-ion-probe measurement method is a method to measure a propagating flame using ion probes installed on the wall surface of a combustion chamber. The dynamic behavior of the propagating flame along the wall surface can be regenerated from the dataset of flame signals from individual ion probes. Although this method only captures flames near the wall surface, the flame propagation behavior can be indirectly visualized. Because this method can attain very high temporal resolution, it can provide precise measurements of high-speed phenomena such as knocking in spark-ignition engines and detonation in detonation combustors. This study aimed to investigate the ability of a developed 64-channel multiple-ion-probe measurement system to characterize a propagating flame. To this end, three flames with substantially different propagation velocities were measured using the proposed multiple-ion-probe measurement system. During the experiments, methane-oxygen stoichiometric mixtures diluted with different amounts of nitrogen were used. The flame propagation velocity varied within the range of several m/s for a turbulent flame to 2.4km/s for detonation by varying the dilution ratio of nitrogen. In the case where a mixture with a nitrogen mole fraction of 0.71 was used, a phenomenon of repeating stagnation and reacceleration of the propagating flame was observed. Furthermore, the phenomenon considered to be flame quenching was also observed near the wall. In the case of no dilution (nitrogen mole fraction = 0.00), multiple-ion probes with an installation interval of 1.5 mm indicated that the velocity fluctuated within the range of -500m/s to +2000 m/s with respect to the Chapman-Jouguet detonation velocity of 2390 m/s. Experiments involving soot foil recording conducted in parallel confirmed that this velocity fluctuation was derived from the detonation cell structure and that micro-explosions in the detonation front could be captured using the multiple-ion-probe method. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.