화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.1, 7-12, February, 2020
황기 줄기 바이오차를 활용한 카드뮴과 망간 이온의 제거
Removal of Cadmium and Manganese Ions Utilizing Astragalus uliginosus L.-Stem Biochar
E-mail:
초록
충북의 북부지역에서 한약재 부산물로서 황기 줄기가 대량 생산되고 있으나, 이러한 부산물들은 특별한 수요처가 없이 밭에 폐기물로 버려지고 있다. 본 연구에서는 이 폐기물을 재활용하고자, 황기 줄기를 사용하여 바이오차를 제조하였다. 이 바이오차를 사용하여 물속에 용해된 카드뮴과 망간 이온의 제거특성을 고찰하였다. 50과 100 mg/L 카드뮴이온을 처리하기 위하여 흡착 평형 실험이 이루어졌을 때, 카드뮴의 제거효율은 각각 100과 95%를 나타내었다. 또한, 50과 100 mg/L 망간 이온을 제거하기 위하여 5 h의 반응이 이루어졌을 때, 각각 36.1과 37.9 mg/g 최대 흡착량을 얻을 수 있었다. 위의 실험 결과, 카드뮴과 망간 이온의 제거공정에서 황기 줄기 바이오차는 활성탄보다 4배 이상의 흡착량을 나타내었다. 그리고 황기 줄기 바이오차와 활성탄 표면의 화학 구조를 관찰하기 위하여 X-ray photoelectron spectroscopy (XPS)를 분석한 결과, 황기 줄기 바이오차는 활성탄과 비교하여 산소 함량과 O/C의 비율이 각각 2.1과 2.4배 증가함을 알 수 있었다. 또한, 망간 이온의 제거능력을 향상시키기 위하여 온도 변화에 의한 운전이 이루어졌으며, 45 ℃로 4 h에서 흡착 평형에 도달하였으며 50과 100 mg/L 망간 이온은 각각 92, 53%의 제거효율을 나타내었다. 결과적으로 이러한 실험 결과들은 물속에 용해된 카드뮴과 망간 이온을 친환경적이며 경제적으로 처리하는 새로운 제거 기술에 유용하게 사용될 수 있을 것이다.
Astragalus uliginosus L.-stems as a by-product of oriental medicine are produced largely in a northern area of Chungbuk province. These by-products do not have any demand and thus usually discarded into the fields as a waste. In this work, a biochar was prepared from the Astragalus uliginosus L.-stem waste for recycling. The biochar was used to investigate the removal characteristics of cadmium and manganese ions dissolved in water. When adsorption equilibrium experiments were performed to treat 50 and 100 mg/L of cadmium ions, the removal efficiencies of cadmium were 100 and 95%, respectively. In addition, the maximum of adsorption amount for manganese ions in 5 h at an initial concentration of 50 and 100 mg/ L was found to be as 36.1 and 37.9 mg/g, respectively. Based on the experimental results, it was found that the adsorption amount of Astragalus uliginosus L.-stem biochar for the removal of both cadmium and manganese ions was four times higher than that of the activated carbon. The surface analysis of both biochar and activated carbon samples using X-ray photoelectron spectroscopy (XPS) analysis showed that the oxygen content and O/C ratio of biochar was 2.1 and 2.4 times higher than that of the activated carbon, respectively. In order to enhance the removal capability of manganese, 50 and 100 mg/L of manganese ions were operated at different temperatures. It was observed that these equilibrium was attained in 4 h under 45 ℃ and removal efficiencies were 92 and 53%, respectively. Consequently, the experimental results can be utilized as a new removal technology for eco-friendly and economically treating cadmium and manganese ions dissolved in water.
  1. Kim KH, Lee NH, Paik IK, Park JH, Yang JK, J. Kor. Soc. Environ. Eng., 32(5), 417 (2010)
  2. Park JH, Wang JJ, Kim SH, Kang SW, Jeong CY, Jeon JR, Park KH, Cho JS, Delaune RD, Seo DC, J. Colloid Interface Sci., 553, 298 (2019)
  3. Kumar U, Bandyopadhyay M, Bioresour. Tech., 97, 104 (2006)
  4. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D, Carbon, 41, 1057 (2003)
  5. Fu F, Wang Q, J. Environ. Manage., 92, 407 (2011)
  6. Esfandiar N, Nasernejad B, Ebadi T, J. Ind. Eng. Chem., 20(5), 3726 (2014)
  7. Kouzbour S, Azher NE, Gourich B, Gros F, Vial C, Stiriba Y, J. Water Process Eng., 16, 233 (2017)
  8. Cerrato JM, Reyes LP, Alvarado CN, Dietrich AM, Water Res., 40, 2720 (2006)
  9. Douterelo I, Sharpe RL, Boxall JB, Water Res., 47, 503 (2013)
  10. Gerke TL, Little BJ, Maynard JB, Sci. Total Environ., 541, 184 (2016)
  11. Patil DS, Chavan SM, Oubagaranadin JUK, J. Environ. Chem. Eng., 4, 468 (2016)
  12. Bamforth SM, Manning DAC, Singleton I, Younger PL, Johnson KL, Appl. Geochem., 21, 1274 (2006)
  13. Gupta VK, Jain CK, Ali I, Sharma M, Saini VK, Water Res., 37, 4038 (2003)
  14. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q, Solanum nigrum L., Bioresour. Technol., 101, 1668-1674 (2010).
  15. Shin HS, Lee CH, Lee YS, Kang KH, J. Kor. Soc. Environ. Eng., 27(5), 535 (2005)
  16. Bailey SE, Olin TJ, Bricka RM, Adrian DD, Water Res., 33(11), 2469 (1999)
  17. Fu F, Wang Q, J. Environ. Manage., 52, 407 (2011)
  18. Bhatnagar A, Minocha AK, Colloids Surf. B: Biointerfaces, 76, 544 (2010)
  19. Choi SS, Appl. Chem. Eng., 25(3), 307 (2014)
  20. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, Chemosphere, 99, 19 (2014)
  21. Park JH, Oak YS, kim SH, Kang SW, Cho JS, Heo J, Delaune RD, Seo DC, AAPG Bull., 58, 751 (2015)
  22. Kolodynska D, Krukowska J, Thomas P, Chem. Eng. J., 307, 353 (2017)
  23. Xu X, Cao X, Zhao L, Chemosphere, 92, 955 (2013)
  24. Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R, Water Res., 46, 854 (2012)
  25. Qian L, Chen B, Environ. Sci. Technol., 47, 8759 (2013)
  26. Mohan D, Sarswat A, Ok YS, Pittman CU, Bioresour. Technol., 160, 191 (2014)
  27. Park JH, Ok YS, Kim SH, Heo JS, Delaune RD, Seo DC, Chemosphere, 142, 77 (2016)
  28. Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z, Chemosphere, 125, 70 (2015)
  29. Ammari TG, Ecol. Eng., 71, 466 (2014)
  30. Kim YH, Park JY, Yoo YJ, Kwak JW, Process Biochem., 34(6), 647 (1999)
  31. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4) (2015)
  32. Uchimiya M, Chang S, Klasson KT, J. Hazard. Mater., 190(1-3), 432 (2011)
  33. Li H, Dong X, Silva EBD, Oliveira LMD, Chen Y, Ma LQ, Chemosphere, 178, 466 (2017)