화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.59, 30974-30985, 2019
Fabrication of hierarchically one-dimensional ZnxCd1-xS/NiTiO3 nanostructures and their enhanced photocatalytic water splitting activity
Hierarchically one-dimensional nanomaterials represent a kind of promising catalyst for photocatalytic of hydrogen generation, where the photoinduced charge carriers can effectively separate and be engaged in the target reaction. Herein, we report the synthesis of hierarchically one-dimensional ZnxCd1-xS/NiTiO3 nanofibers and the investigations of their photocatalytic performance. These well-designed nanofibers demonstrate a typically one-dimensional heterostructure with an excellent continuity, and the element mapping, X-ray diffraction, and X-ray photoelectron spectroscopy collectively confirm the ZnxCd1-xS nanoparticles being decorated on the surface of NiTiO3 nanofibers successfully. The ZnxCd1-xS/NiTiO(3 )nanofibers exhibit enhanced efficiency in photocatalytic hydrogen production under visible light, compared with the ZnxCd1-xS/TiO(3 )nanofibers. The electrochemical impedance spectra measurements reveal that ZnxCd1-xS/NiTiO3 nanofibers facilitated the transport and separation of the photoexcited charge carriers. The superior photocatalytic performance is synthetically attributed to the visible-light-responsive NiTiO3 substrate, pure phase, large region of interface and relatively small grain size. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.