화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.560, 730-742, 2020
Structural, rheological and dynamic aspects of hydrogen-bonding molecular liquids: Aqueous solutions of hydrotropic tert-butyl alcohol
Hypothesis: The structural details, viscosity trends and dynamic phenomena in t-butanol/water solutions are closely related on the molecular scales across the entire composition range. Utilizing the experimental small- and wide-angle x-ray scattering (SWAXS) method, molecular dynamics (MD) simulations and the 'complemented-system approach' method developed in our group it is possible to comprehensively describe the structure-viscosity-dynamics relationship in such structurally versatile hydrogen-bonded molecular liquids, as well as in similar, self-assembling systems with pronounced molecular and supramolecular structures at the intra-, inter-, and supra-molecular scales. Experiments: The SWAXS and x-ray diffraction experiments and MD simulations were performed for aqueous t-butanol solutions at 25 degrees C. Literature viscosity and self-diffusion data were also used. Findings: The interpretive power of the proposed scheme was demonstrated by the extensive and diverse results obtained for aqueous t-butanol solutions across the whole concentration range. Four composition ranges with qualitatively different structures and viscosity trends were revealed. The experimental and calculated zero-shear viscosities and molecular self-diffusion coefficients were successfully related to the corresponding structural details. The hydrogen bonds that were, along with hydrophobic effects, recognized as the most important driving force for the formation of t-butanol aggregates, show intriguing lifetime trends and thermodynamic properties of their formation. (C) 2019 Elsevier Inc. All rights reserved.