화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.123, No.46, 9971-9983, 2019
Attraction between Like-Charged Macroions Mediated by Specific Counterion Configurations
Attraction between like-charged macroions is fundamental to many processes in biology, chemistry, and physics. It also plays an important role in industrial applications such as ion-extraction processes or catalysis. In this work, we report a novel mechanism by which attraction can be realized between spherical macroions at high ionic strength. It consists of specific configurations of two, three, and more counterions that appear between macroions with high statistical probability. The attraction is manifested in a minimum in the potential of mean force between the macroions at short distances. Its depth increases with increasing charge of the macroion, demonstrating that the attraction is electrostatic in nature. It is shown that the implicit solvent model with a distance-dependent dielectric constant can capture both the geometry and thermodynamics of charge-stabilized macroion dimers on the qualitative level. The results obtained for a model colloid with a smooth surface are extrapolated to more realistic systems. Evidence is found that the reported mechanism can be observed in small chemical compounds with encapsulated ions such as fullerenes.