Journal of the American Chemical Society, Vol.141, No.46, 18475-18485, 2019
Directed Copper-Catalyzed Intermolecular Aminative Difunctionalization of Unactivated Alkenes
A diverse collection of copper-catalyzed intermolecular aminative difunctionalizations of unactivated alkenes with N-halodialkylamines as the terminal dialkylamino source is reported. A bidentate auxiliary tethered on the alkene substrates is crucial, which can promote the migratory insertion of nonactivated alkenes into the aminyl radical-metal complex and stabilize the resultant high-valent copper intermediate to allow for further transformations. By employing this strategy, the intermolecular aminohalogenation reactions and a three-component aminoazidation reaction of unactivated alkenes with dialkylamino source were successively achieved in a remarkable regio- and stereoselective manner. These reactions were performed under neutral conditions and maintained excellent functional group tolerance toward a wide range of N-halodialkylamines and unactivated alkenes. Further mechanistic studies and DFT calculations supported a concerted migratory insertion of the C-C double bond into the aminyl radical-metal complex to form a Cu(III) intermediate.