- Previous Article
- Next Article
- Table of Contents
Renewable Energy, Vol.145, 2783-2795, 2020
Inverse heat transfer technique for estimation of focal flux distribution for a concentrating photovoltaic (CPV) square solar parabola dish collector
For a CPV system, prediction of focal flux distribution at the receiver area will give insight to more effective, energy efficient designs and to estimate power output. An experimental method for in-situ prediction of heat flux distribution profile using inverse heat transfer technique on a flat plate receiver for a CPV square parabolic dish is presented. An IR camera is used to measure the temperature of the concentrated receiver surface. The receiver domain is discretised into several heat flux elements and heat flux values for each grid is then estimated using the measured infrared (IR) pixel temperature and ordinary least square. A 3-D steady state heat conduction equation with convection and radiation heat loss boundary is regarded as the forward problem. The simulated temperatures generated from the solution of forward problem using the predicted heat flux distribution and measured temperature distribution are in close agreement. For validation purpose, the concentrated heat flux is also measured using Gardon and Schmidt-Boelter heat flux sensor. The peak predicted focal heat flux on the receiver is found to be 37.41 kW/m(2) whereas the heat flux value measured by the flux sensor is 39.15 kW/m(2) within the deviation of 4.4%. (c) 2019 Elsevier Ltd. All rights reserved.
Keywords:Solar energy;Heat flux prediction;CPV reflective system;Non-intrusive temperature measurement;IR camera;Inverse heat transfer technique