화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.83, 64-71, March, 2020
Reaction kinetics of mixture of nitromethane and detonator confined in carbon nanotube
E-mail:
Bursting of nanobombs with co-encapsulating detonating molecule and nitromethane (NM) inside a carbon nanotube (CNT) has been investigated via nonequilibrium reactive molecular dynamics (NERMD) with density functional theory (DFT) calculation. The target detonating molecules were screened by using Kamlet.Jacobs (K-J) equations. The detonating molecules (i.e., HMX and RDX) exhibited a much higher decomposition rate than NM and contributed to the accelerated decomposition of NM. Subsequently, the CNT nanocontainer functionalized by reaction intermediates burst. The bursting time was shortened by detonating molecules, as predicted by DFT calculations. The overall reaction mechanism did not differ significantly with or without detonating molecules.
  1. Thottempudi V, Yin P, Zhang J, Parrish DA, Shreeve JM, Chem. Eur. J., 20, 542 (2014)
  2. Zhang JH, Zhang QH, Vo TT, Parrish DA, Shreeve JM, J. Am. Chem. Soc., 137(4), 1697 (2015)
  3. Zhang JH, Mitchell LA, Parrish DA, Shreeve JM, J. Am. Chem. Soc., 137(33), 10532 (2015)
  4. Liu J, Jiang W, Yang Q, Song J, Hao GZ, Li FS, Def. Technol., 10, 184 (2014)
  5. Qu X, Yang Q, Han J, Wei Q, Xie G, Chen S, RSC Adv., 6, 46212 (2016)
  6. Lee JH, Kim JC, Jeon WC, Cho SG, Kwak SK, J. Phys. Chem. C, 121, 6415 (2017)
  7. Smeu M, Zahid F, Ji W, Guo H, Jaidann M, J. Phys. Chem. C, 115, 10985 (2011)
  8. Liu LM, Car R, Selloni A, Dabbs DM, Aksay IA, Yetter RA, J. Am. Chem. Soc., 134(46), 19011 (2012)
  9. Zhang C, Wen Y, Xue X, ACS Appl. Mater. Interfaces, 6, 12235 (2014)
  10. Guo D, An Q, Goddard WAIII, Zybin SV, Huang F, J. Phys. Chem. C, 118, 30202 (2014)
  11. Li CF, Mei Z, Zhao FQ, Xu SY, Ju XH, Phys. Chem. Chem. Phys., 20, 14192 (2018)
  12. Zhang JQ, Xu YL, Jia Q, Zhang SJ, Liu N, Gao HX, Hu RZ, RSC Adv., 8, 31028 (2018)
  13. Mei Z, An Q, Zhao FQ, Xu SY, Ju XH, Phys. Chem. Chem. Phys., 20, 29341 (2018)
  14. Vuppuluri VS, Samuels PJ, Caflin KC, Gunduz IE, Son SF, Propell. Explos. Pyrot., 43, 38 (2018)
  15. Zhao L, Yin Y, Sui HL, Yu Q, Sun SH, Zhang HB, Wang SY, Chen LP, Sun J, Thermochim. Acta, 674, 44 (2019)
  16. Kamlet MJ, Jacobs SJ, J. Chem. Phys., 48, 23 (1968)
  17. Wang GX, Shi CH, Gong XD, Xiao HM, J. Phys. Chem. A, 113(7), 1318 (2009)
  18. Politzer P, Murray JS, Cent. Eur. J. Energ. Mater., 8, 209 (2011)
  19. Delley B, J. Chem. Phys., 92, 508 (1990)
  20. Delley B, J. Chem. Phys., 113(18), 7756 (2000)
  21. Dassault Systems BIOVIA, Materials Studio 2019, Dassault Systems, San Diego, (2019).
  22. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
  23. Tkatchenko A, Scheffler M, Phys. Rev. Lett., 102, 073005 (2009)
  24. Plimpton S, J. Comput. Phys., 117, 1 (1995)
  25. Rom N, Zybin SV, van Duin ACT, Goddard WA, Zeiri Y, Katz G, Kosloff R, J. Phys. Chem. A, 115(36), 10181 (2011)
  26. Sun H, Jin Z, Yang CW, J. Mol. Model., 22, 47 (2016)
  27. Chakraborty D, Muller RP, Dasgupta S, Goddard WA, J. Phys. Chem. A, 104(11), 2261 (2000)
  28. Swadley MJ, Li TL, J. Chem. Theory Comput., 3, 505 (2007)