화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.32, No.1, 29-39, February, 2020
Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification
E-mail:
In order to investigate how particle aggregation affects tensile mechanical performance of composite, a ductile biopolymer (poly(caprolactone)) was melt-compounded with CaCO3 particles over a wide concentration range from 10 to 60 wt.%. The aggregation of CaCO3 particles in poly(caprolactone) (PCL) is investigated depending on particle concentration and surface modification (with stearic acid (2.5 wt.%)) based on rheological assessment. If the composite is mixed with a high concentration of particles (> 30 wt.%), morphological observations and a thermal behavior analysis do not find a difference in the particle aggregation regardless of particle surface modification. However, the linear viscoelastic moduli of the composites distinguishes the difference in particle aggregation regarding to surface modification, indicating induced aggregation behavior with surface-modified CaCO3 (sCC). The composite with sCC starts to form network structure of particles at a lower concentration (30 wt.%) than that with unmodified particles (40 wt.%). When particles form the network structure above the particle percolation threshold, the yield strength of the composite begins to decrease even though Young’s modulus is still increasing. In contrast to the expectation of the better dispersion of particles by surface modification as well as improved tensile mechanical performance with better dispersion, sCC rather induced aggregation with a lower concentration of particle than unmodified particles which resulted in decrease in yielding performance. This study showed that rheological study, especially for the composite with high concentration of particles, is useful to figure out the particle dispersion against a limit at morphology observation.
  1. Andrade RMD, Silva Junior SMD, Coutinho SVCR, Jaques NG, Pina HDV, Rodrigues BG, Fook MVL, Fernandes PCR, Ries A, Wellen RMR, Materia, 23, e12255 (2018)
  2. Avella M, Cosco S, Lorenzo ML, Di Pace E, Errico ME, Gentile G, Eur. Polym. J., 42, 1548 (2006)
  3. Bari SS, Chatterjee A, Mishra S, Polym. Rev., 56, 287 (2016)
  4. Bassam F, York P, Rowe RC, Roberts RJ, Int. J. Pharm., 64, 55 (1990)
  5. Cioni B, Lazzeri A, Compos. Interfaces, 17(5-7), 533 (2010)
  6. Dang HC, Nie WC, Wang XL, Wang WT, Song F, Wang YZ, RSC Adv., 4, 53380 (2014)
  7. Deshmukh GS, Pathak SU, Peshwe DR, Ekhe JD, Bull. Mat. Sci., 33, 277 (2010)
  8. Fu SY, Feng XQ, Lauke B, Mai YW, Compos. Pt. B-Eng., 39, 933 (2008)
  9. Ghosal K, Manakhov A, Zajickova L, Thomas S, AAPS PharmSciTech, 18, 72 (2017)
  10. Jeong SB, Yang YC, Chae YB, Kim BG, Mater. Trans., 50, 409 (2009)
  11. Jo JH, Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH, J. Biomed. Mater. Res. Part B, 91, 213 (2009)
  12. Kai WH, Hirota Y, Hua L, Inoue Y, J. Appl. Polym. Sci., 107(3), 1395 (2008)
  13. Kowalewski T, Galeski A, J. Appl. Polym. Sci., 32, 2919 (1986)
  14. Lam TD, Hoang TV, Quang DT, Kim JS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 501, 87 (2009)
  15. Lapcik L, Manas D, Vasina M, Lapcikova B, Reznicek M, Zadrapa P, Compos. Pt. B-Eng., 113, 218 (2017)
  16. Lee JM, Hong JS, Ahn KH, Polym. Compos., 40, 4023 (2019)
  17. Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C, Jerome R, Dubois P, Polymer, 43(14), 4017 (2002)
  18. Li Y, Han C, Zhang X, Bian J, Han L, Polym. Compos., 34, 1620 (2013)
  19. Li Z, Tan BH, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 45, 620 (2014)
  20. Lim HT, Ahn KH, Hong JS, Hyun K, J. Rheol., 57(3), 767 (2013)
  21. Liu H, Han C, Dong L, Polym. Compos., 31, 1653 (2010)
  22. Liu X, Wu Q, Eur. Polym. J., 38, 1383 (2002)
  23. Luduena L, Vazquez A, Alvarez V, Carbohydr. Polym., 87, 411 (2012)
  24. Luduena LN, Kenny JM, Vazquez A, Alvarez VA, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 529, 215 (2011)
  25. Mareri P, Bastide S, Binda N, Crespy A, Compos. Sci. Technol., 58, 747 (1998)
  26. Neumann R, Neunzehn J, Hinueber C, Flath T, Schulze FP, Wiesmann HP, Polym. Lett., 13, 2 (2019)
  27. Ock HG, Ahn KH, Lee SJ, Hyun K, Macromolecules, 49(7), 2832 (2016)
  28. Packham DE, Int. J. Adhes. Adhes., 16, 121 (1996)
  29. Papirer E, Schultz J, Turchi C, Eur. Polym. J., 20, 1155 (1984)
  30. Rocha MCG, Moreira GF, Thome da Silva AHMF, J. Compos Mater., 51, 3365 (2017)
  31. Rybnikar F, J. Appl. Polym. Sci., 42, 2727 (1991)
  32. Sadeghi M, Esfandiari A, Mater. Tehnol., 46, 695 (2012)
  33. Sanchez-Garcia MD, Ocio MJ, Gimenez E, Lagaron JM, J. Plast. Film Sheeting, 24, 239 (2008)
  34. Saveleva MS, Ivanov AN, Kurtukova MO, Atkin VS, et al., Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 85, 57 (2018)
  35. Schawe JEK, Vermeulen PA, van Drongelen M, Colloid Polym. Sci., 293, 1607 (2015)
  36. Shang SW, Williams JW, Soderholm KJ, J. Mater. Sci., 29(9), 2406 (1994)
  37. Shin BY, Lee SI, Shin YS, Balakrishnan S, Narayan R, Polym. Eng. Sci., 44(8), 1429 (2004)
  38. Simoes CL, Viana JC, Cunha AM, J. Appl. Polym. Sci., 112(1), 345 (2009)
  39. Sun Y, Luo Y, Dong Y, Fu Y, Mater. Lett., 193, 26 (2017)
  40. Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW, J. Rheol., 51(3), 429 (2007)
  41. Wang H, Domingos M, Scenini F, Rapid Prototyping J., 24, 731 (2018)
  42. Woodruff MA, Hutmacher DW, Prog. Polym. Sci, 35, 1217 (2010)
  43. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B, Macromol. Chem. Phys., 212, 613 (2011)
  44. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P, Macromol. Biosci., 6, 70 (2006)
  45. Yu H, Matthew HW, Wooley PH, Yang SY, J. Biomed. Mater Part B, 86, 541 (2008)