- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.37, No.3, 387-401, March, 2020
Biological conversion of lignin and its derivatives to fuels and chemicals
E-mail:
Lignocellulosic biomass, which is one of the most abundant and renewable sources for the production of clean fuels and chemicals, consists mainly of cellulose, hemicellulose and lignin. The conversion of cellulose and hemicellulose to value added products has been extensively carried out over the last few decades. However, the direct conversion of lignin, the second most abundant aromatic polymer on earth, is challenging due to its heterogeneity and low reactivity. Most of the lignin produced in the pulp and paper industry is used as a fuel to generate heat and electricity. Recently, the chemical or biological conversion of lignin is considered one of the most promising technologies for the production of high-value products. The biological conversion of lignin has several advantages over the chemical conversion route in terms of low operating costs, high specificity, and the absence of harsh operating conditions and hazardous chemicals. The present review summarizes recent studies on biological valorization of lignin to value-added products. Additionally, this review emphasizes the various lignin extraction techniques, catabolic pathways involved, necessary enzymes, and the major challenges of this process.
- Sagues WJ, Bao H, Nemenyi JL, Tong Z, ACS Sustain. Chem. Eng., 6, 4958
- Yu IKM, Tsang DCW, Bioresour. Technol., 238, 716 (2017)
- Karkas MD, ChemSusChem, 10, 2111 (2017)
- Li CZ, Zhao XC, Wang AQ, Huber GW, Zhang T, Chem. Rev., 115(21), 11559 (2015)
- Chatel G, Rogers RD, ACS Sustain. Chem. Eng., 2, 322 (2014)
- Gosselink RJA, De Jong E, Guran B, Abacherli A, Ind. Crop. Prod., 20, 121 (2004)
- Grossman A, Wilfred V, Curr. Opin. Biotechnol., 56, 112 (2019)
- Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR, Curr. Opin. Biotechnol., 42, 40 (2016)
- Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, et al., Science, 344, 124684 (2014)
- Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 110(6), 3552 (2010)
- Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, et al., Int. Microbiol., 8, 195 (2005)
- Collard FX, Blin J, Renew. Sust. Energ. Rev., 38, 594 (2014)
- Liu ZH, Le RK, Kosa M, Yang B, Yuan J, Ragauskas AJ, Renew. Sust. Energ. Rev., 105, 349 (2019)
- Wang HL, Pu YQ, Ragauskas A, Yang B, Bioresour. Technol., 271, 449 (2019)
- Liu C, Wu SL, Zhang HY, Xiao R, Fuel Process. Technol., 191, 181 (2019)
- Subramani V, Gangwal SK, Energy Fuels, 22(2), 814 (2008)
- Bahri S, Patra T, Sonal, Upadhyayula S, Microporous Mesoporous Mater., 275, 1 (2019)
- Wang SR, Dai GX, Yang HP, Luo ZY, Prog. Energy Combust. Sci., 62, 33 (2017)
- Shen D, Jin W, Hu J, Xiao R, Luo K, Renew. Sust. Energ. Rev., 51, 761 (2015)
- Liu C, Hu J, Zhang HY, Xiao R, Fuel, 182, 864 (2016)
- Liu C, Wang X, Lin F, Zhang HY, Xiao R, Fuel Process. Technol., 169, 50 (2018)
- Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R, Nat. Prod. Rep, 28, 1883 (2011)
- Taylor CR, Hardiman EM, Ahmad M, Sainsbury PD, Norris PR, Bugg TDH, J. Appl. Microbiol., 113(3), 521 (2012)
- Xie S, Qin X, Cheng Y, Laskar D, Qiao W, Sun S, Reyes LH, Wang X, Dai SY, Sattler SE, Kao K, Yang B, Zhang X, Yuan JS, Green Chem., 17, 1657 (2015)
- Xie X, Syrenne R, Sun S, Yuan JS, Curr. Opin. Biotechnol., 27, 195 (2014)
- Ni J, Tokuda G, Biotechnol. Adv., 31, 838 (2013)
- Schutyser W, Renders T, Van Den Bosch S, Koelewijn SF, Beckham GT, Sels BF, Chem. Soc. Rev., 47, 852 (2018)
- Chen Z, Wan C, Renew. Sust. Energ. Rev., 73, 610 (2017)
- Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M et al.,, Biotechnol. Adv., 34, 1318 (2016)
- Mahmood N, Yuan ZS, Schmidt J, Xu CB, Bioresour. Technol., 139, 13 (2013)
- Tribot A, Amer G, Abdou Alio M, de Baynast H, Delattre C, et al., Eur. Polym. J., 112, 228 (2019)
- Fredheim GE, Braaten SM, Christensen BE, J. Chromatogr. A, 942, 191 (2002)
- Zhao XB, Cheng KK, Liu DH, Appl. Microbiol. Biotechnol., 82(5), 815 (2009)
- Avellar BK, Glasser WG, Biomass Bioenerg., 14(3), 205 (1998)
- Rajendran K, Drielak E, Sudarshan Varma V, Muthusamy S, Kumar G, Biomass Convers. Biorefinery, 8, 471 (2018)
- Liu W, Chen W, Hou Q, Wang S, Liu F, RSC Adv., 8, 10207 (2018)
- Thomas VA, Donohoe BS, Li M, Pu Y, Ragauskas AJ, Kumar R, Nguyen TY, Cai CM, Wyman CE, Biotechnol. Biofuels, 10, 252 (2017)
- Shahbazi A, Zhang B, Bioalcohol production, Woodhead Publishing, United Kingdom (2010).
- Lloyd TA, Wyman CE, Bioresour. Technol., 96(18), 1967 (2005)
- Ibanez AB, Bauer S, Biomass Bioenerg., 68, 75 (2014)
- Kim JS, Lee YY, Kim TH, Bioresour. Technol., 199, 42 (2016)
- Tolbert, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ, Biofuel. Bioprod. Bior., 8, 836 (2014)
- Hassan SS, Williams GA, Jaiswal AK, Bioresour. Technol., 262, 310 (2018)
- Kumar G, Sivagurunathan P, Zhen GY, Kobayashi T, Kim SH, Xu KQ, Bioresour. Technol., 245, 196 (2017)
- Kaldstrom M, Meine N, Fares C, Rinaldi R, Schuth F, Green Chem., 16, 2454 (2014)
- Calvaruso G, Clough MT, Rinaldi R, Green Chem., 19, 2803 (2017)
- Chen X, Shekiro J, Pschorn T, Sabourin M, Tao L, Elander R, et al., Biotechnol. Biofuels, 7, 98 (2014)
- Chen X, Wang W, Ciesielski P, Trass O, Park S, Tao L, Tucker MP, ACS Sustain. Chem. Eng., 4, 324 (2016)
- Chen X, Kuhn E, Jennings EW, Nelson R, Tao L, Zhang M, Tucker MP, Energy Environ. Sci., 9, 1237 (2016)
- Saratale RG, Shin HS, Ghodake GS, Kumar G, Oh MK, Saratale GD, Bioresour. Technol., 258, 26 (2018)
- Wang Q, Wang ZH, Shen F, Hu JG, Sun FB, Lin LL, Yang G, Zhang YZ, Deng SH, Bioresour. Technol., 166, 420 (2014)
- Chen Z, Wan CX, Bioresour. Technol., 250, 532 (2018)
- Kumar G, Sivagurunathan P, Zhen GY, Kobayashi T, Kim SH, Xu KQ, Bioresour. Technol., 245, 196 (2017)
- Bjorkman A, Nature, 174, 1057 (1954)
- Jiang B, Cao T, Gu F, Wu W, Jin Y, ACS Sustain. Chem. Eng., 5, 342 (2017)
- Whetten R, Sederoff R, Plant Cell, 7, 1001 (1995)
- Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W, Biomacromolecules, 15(1), 327 (2014)
- Mackenzie AK, Naas AE, Kracun SK, Schuckel J, Fangel JU, Agger JW, Willats WGT, Eijsink VGH, Pope PB, Appl. Environ. Microbiol., 81, 187 (2015)
- Wong DWS, Appl. Biochem. Biotechnol., 157(2), 174 (2009)
- Masai E, Katayama Y, Fukuda M, Biosci. Biotechnol. Biochem., 71, 1 (2007)
- Sato Y, Moriuchi H, Hishiyama S, Otsuka Y, Oshima K, et al., Appl. Environ. Microbiol., 75, 5195 (2009)
- Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V, Green Chem., 15, 1373 (2013)
- Marinovic M, Nousiainen P, Dilokpimol A, Kontro J, Moore R, Sipila J, De Vries RP, Makela MR, Hilden K, ACS Sustain. Chem. Eng., 6, 2878 (2018)
- Gall DL, Ralph J, Donohue TJ, Noguera DR, Environ. Sci. Technol., 48, 12454 (2014)
- Picart P, Muller C, Mottweiler J, Wiermans L, Bolm C, De Marfa PD, Schallmey A, ChemSusChem, 7, 3164 (2014)
- Mnich E, Vanholme R, Oyarce P, Liu S, Lu F, Goeminne G, et al., Plant Biotechnol. J., 15, 581 (2017)
- Pandey MP, Kim CS, Chem. Eng. Technol., 34(1), 29 (2011)
- Pieper DH, Appl. Microbiol. Biotechnol., 67(2), 170 (2005)
- Ornston LN, J. Biol. Chem., 241, 3787 (1966)
- Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B, Biotechnol. Biofuels., 10, 44 (2017)
- Tian JH, Pourcher AM, Bouchez T, Gelhaye E, Peu P, Appl. Microbiol. Biotechnol., 98(23), 9527 (2014)
- Bugg TDH, Ahmad M, Hardiman EM, Singh R, Curr. Opin. Biotechnol., 22, 394 (2011)
- Pradhan S, Dikshit PK, Moholkar VS, Polym. Adv. Technol., 29, 2392 (2018)
- Kumar P, Maharjan A, Jun HB, Kim BS, Biotechnol. Appl. Biochem., 66, 153 (2019)
- Yu J, Stahl H, Bioresour. Technol., 99(17), 8042 (2008)
- Tomizawa S, Chuah JA, Matsumoto K, Doi Y, Numata K, ACS Sustain. Chem. Eng., 2, 1106 (2014)
- Si M, Yan X, Liu M, Shi M, Wang Z, Wang S, Zhang J, Gao C, Chai L, Shi Y, ACS Sustain. Chem. Eng., 6, 7969 (2018)
- Linger JG, Vardon DR, Guarnieri MT, Karp EM, et al., Proc. Natl. Acad. Sci. U.S.A., 111, 12013 (2014)
- Liu ZH, Olson ML, Shinde S, Wang X, Hao N, Yoo, CG, Green Chem., 19, 4939 (2017)
- Mehrabi R, Bagheri G, Alipour F, J. Entomol. Zool. Stud., 3, 33 (2015)
- Bowers T, Vaidya A, Smith DA, Lloyd-Jones G, J. Chem. Technol. Biotechnol., 89(7), 1030 (2014)
- Rehm BHA, Mitsky TA, Steinbuchel A, Appl. Environ. Microbiol., 67, 3102 (2001)
- Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, Zhang Z, Yu X, Appl. Environ. Microbiol., 84, e01469 (2018)
- Numata K, Morisaki K, ACS Sustain. Chem. Eng., 3, 569 (2015)
- Kumar M, Singhal A, Verma PK, Thakur IS, ACS Omega, 2, 9156 (2017)
- Lopes MSG, Gomez JGC, Taciro MK, Mendonca TT, Silva LF, J. Ind. Microbiol. Biotechnol., 41, 1353 (2014)
- Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R, Bioresour. Technol., 259, 451 (2018)
- Harwood CS, Parales RE, Annu. Rev. Microbiol., 50, 553 (1996)
- Warhurst AM, Fewson CA, Crit. Rev. Biotechnol., 14, 29 (1994)
- Xu Z, Lei P, Zhai R, Wen Z, Jin M, Biotechnol. Biofuels, 12, 1 (2019)
- Eggeling L, Sahm H, Arch. Microbiol., 126, 141 (1980)
- Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Waltermann M, Steinbuchel A, Microbiology, 148, 1407 (2002)
- Alvarez HM, Mayer F, Fabritius D, Steinbuchel A, Arch. Microbiol., 165, 377 (1996)
- Kosa M, Ragauskas AJ, Appl. Microbiol. Biotechnol., 93(2), 891 (2012)
- Shields-Menard SA, AmirSadeghi M, Green M, Womack E, et al., Int. Biodeterior. Biodegrad., 121, 79 (2017)
- Kosa M, Ragauskas AJ, Green Chem., 15, 2070 (2013)
- He Y, Li X, Ben H, Xue X, Yang B, ACS Sustain. Chem. Eng., 5, 2302 (2017)
- Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, Yuan JS, Green Chem., 18, 1306 (2016)
- Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C, Microb. Cell Fact., 17, 115 (2018)
- Xie NZ, Liang H, Huang RB, Xu P, AAPG Bull., 32, 615 (2014)
- Van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchałka J, Wery J, Dos Santos VAPM, Eggink G, Mars AE, J. Biotechnol., 156, 163 (2011)
- Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, et al., Metab. Eng., 47, 279 (2018)
- Chua JW, Hsieh JH, World J. Microbiol. Biotechnol., 6, 127 (1990)
- Johnson CW, Salvachua D, Khanna P, Smith H, Peterson DJ, Beckham GT, Metab. Eng. Commun., 3, 111 (2016)
- Barton N, Horbal L, Starck S, Kohlstedt M, Luzhetskyy A, Wittmann C, Metab. Eng., 45, 200 (2018)
- Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, et al., Energy Environ. Sci., 8, 617 (2015)
- Johnson CW, Abraham PE, Linger JG, Khanna P, Hettich RL, Beckham GT, Metab. Eng. Commun., 5, 19 (2017)
- Wu W, Dutta T, Varman AM, Eudes A, Manalansan B, Loque D, Singh S, Sci. Rep., 7, 8420 (2017)
- Fache M, Boutevin B, Caillol S, ACS Sustain. Chem. Eng., 4, 35 (2016)
- Priefert H, Rabenhorst J, Steinbuchel A, Appl. Microbiol. Biotechnol., 56(3-4), 296 (2001)
- Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TDH, ACS Chem. Biol., 8, 2151 (2013)
- Graf N, Altenbuchner J, Appl. Microbiol. Biotechnol., 98(1), 137 (2014)
- Kaur B, Chakraborty D, Kumar B, Biomed Res. Int., 2013, 590359 (2013)
- Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M, J. Biotechnol., 156, 309 (2011)
- Zhang YHP, Biotechnol. Adv., 33, 1467 (2015)
- Picart P, De Maria PD, Schallmey A, Front. Microbiol., 6, 916 (2015)
- Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, et al., J. Basic Microbiol., 41, 185 (2001)
- Kinnunen A, Maijala P, Jarvinen P, Hatakka A, Curr. Biotechnol., 6, 105 (2016)
- Bourbonnais R, Paice MG, Febs Lett., 267, 99 (1990)
- Gianfreda L, Xu F, Bollag J, Gianfreda L, Xu F, Bollag J, Bioremediat. J., 3, 37 (2013)
- Hilgers R, Vincken JP, Gruppen H, Kabel MA, ACS Sustain. Chem. Eng., 6, 2037 (2018)
- Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S, Appl. Environ. Microbiol., 63, 4627 (1997)
- Baiocco P, Barreca AM, Fabbrini M, Galli C, Gentili P, Org. Biomol. Chem., 1, 191 (2003)
- Eggert C, Temp U, Dean JFD, Eriksson KEL, Febs Lett., 391, 144 (1996)
- Astolti P, Brandi P, Galli C, Gentili P, Gerini MF, Greci L, Lanzalunga O, New J. Chem., 29, 1308 (2005)
- Camarero S, Garcia O, Vidal T, Colom J, del Rio JC, Gutierrez A, Gras JM, Monje R, Martinez MJ, Martinez AT, Enzyme Microb. Technol., 35(2-3), 113 (2004)
- Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A, Enzyme Res., 2011, 217861 (2011)
- Upadhyay P, Shrivastava R, Agrawal PK, 3 Biotech, 6, 1 (2016)
- Perez J, Munoz-Dorado J, De La Rubia T, Martinez J, Int. Microbiol., 5, 53 (2002)
- Gold MH, Wariishi H, Valli K, ACS Symp. Ser., 389, 127 (1989)
- Christian V, Shrivastava R, Shukla D, Modi H, Vyas BRM, Enzyme Microb. Technol., 36(4), 426 (2005)
- Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A, Fems Microbiol. Rev., 41, 941 (2017)
- Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI, Microbiologyopen, 6, e00394 (2017)
- Niladevi KN, Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues, Springer Netherlands, 397 (2009).
- Hofrichter M, Enzyme Microb. Technol., 30(4), 454 (2002)
- Mester T, Field JA, J. Biol. Chem., 273, 15412 (1998)
- Baratto MC, Juarez-Moreno K, Pogni R, Basosi R, Vazquez-Duhalt R, Environ. Sci. Pollut. Res., 22, 8683 (2015)
- Ravichandran A, Rao RG, Thammaiah V, Gopinath SM, Sridhar M, BioResources, 14, 5132 (2019)
- Zeng J, Mills MJL, Simmons BA, Kent MS, Sale KL, Green Chem., 19, 2145 (2017)
- Mohorcic M, Bencina M, Friedrich J, Jerala R, Bioresour. Technol., 100(2), 851 (2009)
- Fernandez-Fueyo E, Linde D, Almendral D, Lopez-Lucendo MF, Ruiz-Duenas FJ, Martinez AT, Appl. Microbiol. Biotechnol., 99(21), 8927 (2015)
- Kim SJ, Shoda M, Appl. Environ. Microbiol., 65, 1029 (1999)
- Johjima T, Ohkuma M, Kudo T, Appl. Microbiol. Biotechnol., 61(3), 220 (2003)
- Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M, Appl. Microbiol. Biotechnol., 85(6), 1869 (2010)
- Salvachua D, Prieto A, Martinez AT, Martinez MJ, Appl. Environ. Microbiol., 79, 4316 (2013)
- Roberts JN, Singh R, Grigg JC, Murphy MEP, Bugg TDH, Eltis LD, Biochemistry, 50, 5108 (2011)
- Rahmanpour R, Bugg TDH, Arch. Biochem. Biophys., 574, 93 (2015)
- Lee S, Kang M, Bae JH, Sohn JH, Sung BH, Front. Bioeng. Biotechnol., 7, 209 (2019)
- Loncar N, Colpa DI, Fraaije MW, Tetrahedron, 72, 7276 (2016)
- Rahmanpour R, Rea D, Jamshidi S, Fulop V, Bugg TDH, Arch. Biochem. Biophys., 594, 54 (2016)
- Avram A, Sengupta A, Pfromm PH, Zorn H, Lorenz P, Schwarz T, Nguyen KQ, Czermak P, Biocatalysis, 4, 1 (2018)
- Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG, Biol. Chem., 384, 1049 (2003)
- Shi Y, Yan X, Li Q, Wang X, Liu MR, Xie SX, Chai LY, Yuan JS, Process Biochem., 52, 238 (2017)
- Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ, Green Chem., 17, 2784 (2015)
- Wells T, Wei Z, Ragauskas A, Biomass Bioenerg., 72, 200 (2015)
- Hu M, Wang J, Gao Q, Bao J, J. Biotechnol., 281, 81 (2018)
- Wang ZN, Li N, Pan XJ, Fuel, 240, 119 (2019)
- Sonoki T, Takahashi K, Sugita H, Hatamura M, Azuma Y, Sato T, Suzuki S, Kamimura N, Masai E, ACS Sustain. Chem. Eng., 6, 1256 (2018)
- Salvachua D, Johnson CW, Singer CA, Rohrer H, Peterson DJ, Black BA, Knapp A, Beckham GT, Green Chem., 20, 5007 (2018)
- Rodriguez A, Salvachua D, Katahira R, Black BA, Cleveland NS, et al., ACS Sustain. Chem. Eng., 5, 8171 (2017)