화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.3, 402-410, March, 2020
Free-volume theory coupled with modified group-contribution PC-SAFT for predicting viscosities of 1-alkenes
E-mail:
A modified group-contribution PC-SAFT EoS combined with the Free-volume theory (FVT), recently proposed (DOI:10.1016/j.fluid.2019.112280) to simultaneously model the fluid phase equilibria and viscosity of fluids, is extended in this work to estimate the viscosity of 1-alkenes. Generalized correlation coefficients are proposed for the FVT triplet parameter set, which makes it possible to extrapolate the viscosity prediction of similar compounds that are not included in the fitting pool. The model is validated using a large experimental data of 1-alkenes over wide range of temperature and pressure (up to 2,500 bars). For 1-pentene to 1-triacontene, the overall average absolute deviation of the experimental liquid and vapor viscosity from those calculated by the model is of 5.37% and 1.41%, respectively, which are appropriate for most industrial applications.
  1. Hendriks E, Kontogeorgis GM, Dohrn R, de Hemptinne JC, Economou IG, Zilnik LF, Vesovic V, Ind. Eng. Chem. Res., 49(22), 11131 (2010)
  2. Nieto-Draghi C, Fayet G, Creton B, Rozanska X, Rotureau P, de Hemptinne JC, Ungerer P, Rousseau B, Adamo C, Chem. Rev., 115(24), 13093 (2015)
  3. Mehrotra AK, Monnery WD, Svrcek WY, Fluid Phase Equilib., 117(1-2), 344 (1996)
  4. Baled HO, Gamwo IK, Enick RM, McHugh MA, Fuel, 218, 89 (2018)
  5. Polishuk I, Ind. Eng. Chem. Res., 54(27), 6999 (2015)
  6. Martins RJ, Cardoso MJED, Barcia OE, Ind. Eng. Chem. Res., 42(16), 3824 (2003)
  7. Allal A, Boned C, Baylaucq A, Phys. Rev. E, 64, 011203 (2001)
  8. Quinones-Cisneros SE, Zeberg-Mikkelsen CK, Fernandez J, Garcia J, AIChE J., 52(4), 1600 (2006)
  9. Satyro MA, Yarranton HW, Fluid Phase Equilib., 298(1), 1 (2010)
  10. Polishuk I, Yitzhak A, Ind. Eng. Chem. Res., 53(2), 959 (2014)
  11. He M, Qi X, Liu X, Su C, Lv N, Int. J. Refrigeration, 54, 55 (2015)
  12. Tan SP, Adidharma H, Towler BF, Radosz M, Ind. Eng. Chem. Res., 44(22), 8409 (2005)
  13. Llovell F, Marcos RM, Vega LF, J. Phys. Chem. B, 117(27), 8159 (2013)
  14. Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244 (2001)
  15. NguyenHuynh D, Fluid Phase Equilib., 430, 33 (2016)
  16. NguyenHuynh D, Mai TQC, Tran TKS, Fluid Phase Equilib., 501, 112280 (2019)
  17. NguyenHuynh D, Luu MT, Nguyen XTT, Mai CTQ, Tran STK, Fluid Phase Equilib., 502, 112298 (2019)
  18. Nguyen TTX, NguyenHuynh D, Fluid Phase Equilib., 472, 128 (2018)
  19. Neufeld PD, Janzen A, Aziz R, J. Chem. Phys., 57, 1100 (1972)
  20. NguyenHuynh D, NguyenHuynh D, Fluid Phase Equilib., 434, 176 (2017)
  21. Nguyenhuynh D, Universite Paris Nord, Villetaneuse, France (2008, pp. 59-105).
  22. NguyenHuynh D, Fluid Phase Equilib., 473, 201 (2018)
  23. Rowley R, Design Institute for Physical Properties, Ref Type: Electronic Citation (2010).
  24. Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, J. Mol. Liq., 197, 160 (2014)
  25. Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, Thermochim. Acta, 592, 73 (2014)
  26. Sagdeev DI, Fomina MG, Abdulagatov M, J. Solution Chem., 46, 966 (2017)
  27. Lubarsky H, Polishuk I, NguyenHuynh D, J. Supercrit. Fluids, 110, 11 (2016)
  28. Lubarsky H, Polishuk I, NguyenHuynh D, J. Supercrit. Fluids, 115, 65 (2016)
  29. Dong N, Tran STK, Mai CTQ, Ind. Eng. Chem. Res., 58(36), 16963 (2019)
  30. Huynh DN, Mai CTQ, Ind. Eng. Chem. Res., 58(20), 8923 (2019)
  31. Hashim ET, Ghalib L, Adell H, Pet. Sci. Technol., 30, 2341 (2012)
  32. Yucel HG, Ozdogan S, Can. J. Chem. Eng., 76(1), 148 (1998)
  33. Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, J. Chem. Eng. Data, 59(4), 1105 (2014)
  34. Sagdeev DI, Fomina MG, Mukhamedzyanov GK, Abdulagatov IM, High Temp.-High Pressures, 42, 509 (2013)
  35. Lucas K, Stephan K, Viscosity of dense fluids, Plenum Press: New York (1979).