화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.84, 120-130, April, 2020
Electrochemical growth of two-dimensional tin nano-platelet as high-performance anode material in lithium-ion batteries
E-mail:
A template free, single-step process is developed for fabrication two-dimensional tin nano-platelets by electrochemical deposition in the presence of Triton X100 (TX100). Electrochemical studies combined with structural characterization revealed that during electrodeposition, TX100 molecules adsorb preferentially on {022} planes of Sn and highly anisotropic growth promotes in [200] direction which results in the formation of platelet morphology. The deposited platelets exhibit a high aspect ratio of 30 (width to thickness) and thickness of 25 ± 5 nm that uniformly covered the substrate with a high platelet density of 9 × 108 cm-2. The electrochemical performance of nano-platelets for lithium storage was studied in detail and compared with other morphologies of tin. Tin nano-platelets exhibited high reversible capacity and excellent cycling performance, the capacity was maintained at 820 mA h g-1 for 100 cycles and more, far superior to the other structures. Excellent rate capability was also observed for nano-platelets up to 5 C, with the ability to be operated at 20 C without damage. The superior electrochemical performance of tin platelets is mainly attributed to its two-dimensional structure that efficiently distributes strain, allowing high mechanical stability even after 100 cycles, as confirmed by Scanning Electron Microscopy (SEM).
  1. Zhang M, Wang T, Cao G, Int. Mater. Rev., 60(6), 330 (2015)
  2. Morimoto H, Tobishima S, Negishi H, J. Power Sources, 146(1-2), 469 (2005)
  3. Wang B, et al., Mater. Today, 15(12), 544 (2012)
  4. Janish MT, Mackay DT, Liu Y, Jungjohann KL, Carter CB, Norton MG, J. Mater. Sci., 51(1), 589 (2016)
  5. Pu J, Du HX, Wang J, Wu WL, Shen ZH, Liu JY, Zhang HG, J. Power Sources, 360, 189 (2017)
  6. Li W, Sun X, Yu Y, Small Methods, 1(3), 160003 (2017)
  7. Song T, et al., Nano Lett., 10(5), 1710 (2010)
  8. Luo B, et al., Energy Environ. Sci., 5(1), 5226 (2012)
  9. Zhuo L, et al., RSC Adv., 2(12), 5084 (2012)
  10. Zavarine IS, Khaselev O, Zhang Y, J. Electrochem. Soc., 150(4), C202 (2003)
  11. Schlesinger M, Paunovic M, Modern Electroplating, Wiley, 2011.
  12. Mackay DT, Janish MT, Sahaym U, Kotula PG, Jungjohann KL, Carter CB, Norton MG, J. Mater. Sci., 49(4), 1476 (2014)
  13. Rinne CL, Hren JJ, Fedkiw PS, J. Electrochem. Soc., 149(3), C150 (2002)
  14. Nomura K, Ujihira Y, J. Mater. Sci., 25(3), 1745 (1990)
  15. Barry FJ, Cunnane VJ, J. Electroanal. Chem., 537(1-2), 151 (2002)
  16. Trejo G, Ortega R, Meas Y, Ozil P, Chainet E, Nguyen B, J. Electrochem. Soc., 145(12), 4090 (1998)
  17. Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, Wiley, 2000.
  18. Hanzu I, et al., J. Phys. Chem. C, 113(48), 20568 (2009)
  19. Haynes WM, CRC Handbook of Chemistry and Physics, CRC Press, 2016.
  20. Gomez E, Guaus E, Sanz F, Valles E, J. Electroanal. Chem., 465(1), 63 (1999)
  21. Collazo A, et al., Surf. Coat. Technol., 280, 8 (2015)
  22. Schindler W, Hugelmann P, Hugelmann A, Kartner F, J. Electroanal. Chem., 522(1), 49 (2002)
  23. Pletcher D, et al., Instrumental Methods in Electrochemistry, Elsevier Science, 2001.
  24. Gunawardena G, et al., J. Electroanal. Chem. Interfacial Electrochem. 138 (2), 225(1982).
  25. Wen SX, Szpunar JA, Electrochim. Acta, 50(12), 2393 (2005)
  26. Bosco E, Rangarajan SK, J. Electroanal. Chem. Interfacial Electrochem., 134 (2), 213 (1982).
  27. Shin HC, Dong J, Liu M, Adv. Mater., 15(19), 1610 (2003)
  28. Ahmed AM, Darweesh M, Int. J. Electrochem. Sci., 9, 371 (2014)
  29. Xu R, et al., Cryst. Growth Des., 7(9), 1904 (2007)
  30. Zhang C, et al., Mater. Technol., 31(9), 532 (2016)
  31. Bai X, Yi L, Liu DL, Nie EY, Sun CL, Feng HH, Xu JJ, Jin Y, Jiao ZF, Sun XS, Appl. Surf. Sci., 257(24), 10317 (2011)
  32. Schiavi PG, Altimari P, Zanoni R, Pagnanelli F, Electrochim. Acta, 220, 405 (2016)
  33. Hou YL, Kondoh H, Shimojo M, Kogure T, Ohta T, J. Phys. Chem. B, 109(41), 19094 (2005)
  34. Pawar SM, Pawar BS, Hou B, Ahmed ATA, Chavan HS, Jo YC, Choi SE, Kim JM, Seo JW, Cha SN, Inamdar AI, Kim HS, Im HS, J. Ind. Eng. Chem., 69, 13 (2019)
  35. Guo L, Zhang S, Searson P, Phys. Rev. E, 79(5), 051601 (2009)
  36. Guo L, Searson PC, Electrochim. Acta, 55(13), 4086 (2010)
  37. Nam DH, et al., ACS Nano, 8(11), 11824 (2014)
  38. Eom K, et al., Nano Energy, 12, 314 (2015)
  39. Seo DM, Nguyen CC, Young BT, Heskett DR, Woicik JC, Lucht BL, J. Electrochem. Soc., 162(13), A7091 (2015)
  40. Hsu CH, et al., J. Mater. Chem. A, 2(39), 16547 (2014)
  41. Wang F, Chen L, Deng CF, Ye HT, Jiang XF, Yang G, Electrochim. Acta, 149, 330 (2014)
  42. Jarvis CR, Lain MJ, Yakovleva MV, Gao Y, J. Power Sources, 162(2), 800 (2006)
  43. Tian H, et al., J. Materiomics, 1(3), 153 (2015)
  44. Zhuo K, Jeong MG, Chung CH, J. Power Sources, 244, 601 (2013)
  45. Gu CD, Mai YJ, Zhou JP, You YH, Tu JP, J. Power Sources, 214, 200 (2012)
  46. Uysal M, Cetinkaya T, Alp A, Akbulut H, Appl. Surf. Sci., 290, 6 (2014)
  47. Tian M, Wang W, Wei YJ, Yang RG, J. Power Sources, 211, 46 (2012)
  48. Guler MO, Guzeler M, Nalci D, Singil M, Alkan E, Dogan M, Guler A, Akbulut H, Appl. Surf. Sci., 446, 122 (2018)
  49. Liu X, et al., Mater. Lett., 223, 203 (2018)
  50. Lee YN, et al., J. Alloy. Compd., 777, 1098 (2019)
  51. Liu CJ, Huang H, Cao GZ, Xue FH, Camacho RAP, Dong XL, Electrochim. Acta, 144, 376 (2014)
  52. Hsu YJ, Lu SY, Lin YF, Small, 2(2), 268 (2006)
  53. Nayral C, et al., Chem. Eur. J., 6(22), 4082 (2000)